
Paper title: ALICE - Avaya Labs Innovations Cloud Engagement.
Speaker: Kundan Singh. Track: IPTComm.
Hello everyone. My name is Kundan Singh. This presentation is about ALICE, or Avaya Labs Innovations Cloud Engagement.

The basic idea is shown here.

A service developer on the left could be a small team within Avaya or an external partner, who creates some application or
service, such as a VoIP or messaging system. The tenant is a small or medium business on the right who registers for trying
out one or more services. The tenant admin enables some services for its users, and the end users in that tenant group use the
service.
There are multiple services developers, and multiple tenants. The portal shields the developers from the tenants, so that the
services and tenants can come and go in any order for the trial.
This model is particularly useful for many research prototypes and early enterprise systems that are created as an enterprise
software but need a cloud trial with existing customers before deciding to make it a product.

This is a list of currently hosted services in ALICE.

Team spaces or connected spaces is a team collaboration system for persistent sharing of content among team members, and
for escalation to real-time voice, video or application sharing. It also has the ability to share documents, meeting notes, etc.,
among team members.
Multimedia messaging or Avaya Multimedia Messaging (AMM) service enables unified communication and messaging using
HTML5 technologies, and has support for user contacts, directories, messaging, photos and search.
Vclick and Strata are endpoint driven apps that use a light weight resource service in the cloud. Vclick is a pure web based
video call and conferencing application, that can integrate seamlessly with existing exterprise systems such as corporate
directory or telephony gateway.
Strata mobile and desktop app allows quickly reaching yourfrequently used contact on whatever device or app the contact is
available on. Although it is targeted for mobile devices, there is an equivalent desktop app as well.
Then there is a demonstration of contact center help desk, where a customer service representative can use co-browsing with
real-time text or voice/video to help a customer walk through web navigation and form filling.

Story of ALICE
Avaya Labs Innovations Cloud Engagement
A long time ago, Avaya spun out of Lucent to innovate and focus on enterprise communication systems. These systems were
and are installed on premises in customers locations or their data centers.
Over the years, with growing number of communication offerings, on site maintenance became a problem. Thankfully, the
emergence of cloud gave a new hope.
This is our story in Avaya Labs, of creating a cloud portal to allow our developers to create services and our customers to try
them out...

Current services
1. Team spaces
2. Multimedia messaging
3. Vclick click-to-call
4. Strata mobile app
5. Customer-agent co-browsing
6. Meeting helper app



real-time text or voice/video to help a customer walk through web navigation and form filling.
The meeting helper app joins a conference bridge on behalf of the user during a meeting, captures meeting notes and meta
data, and sends the meeting summary at the end to all the participants.

In this video demonstration, you will see the current implementation of the portal. And I will also show multi-tenancy for a few
services.

The user named Green logs on the portal website. List of approved services (or apps) are shown. Also shown are the the basic
user profile on the portal, the additional tenant groups besides the default one derived from the user's email domain, and other
users in that email domain who have signed up.
Let me expand one of the services. The team spaces service page can be launched from here for desktop, as well as for
mobile. The service specific user profile is editable on the specific team spaces service website.
This user belongs to additional tenant group of first bank. So if the user selects that group, then opening the service page takes
her to the customized tenant specific connected spaces instance. Similarly for the mobile website as you can see here.
Strata is another service shown here. Two instances of the Strata app on desktop are shown. User henley logs in on the left
application and sees his top 9 contacts. Then he uses the secure token obtained from a different tenant group of First Hospital
customer trial, and logs in on the right side application.
Here you can see both apps are logged in with the same portal user account, but in different tenant groups. The Strata app
uses data partitioning for multi-tenancy, as you can see with customized look-and-feel and different set of top 9 contact data for
the same user, even though the same service and same client app is used.
This user is logged in as an admin. The admin interface shows the list of users signed up, and their non-default services
enabled, and their non-default tenant groups assigned. The admin can modify these attributes for individual users.

Rest of the presentation is going to describe in more detail about this system. In particular, first part of the paper focusses on
the self-service and multi-tenancy architecture in the portal. And how that is different from what's out there.
And the second part deals with the individual services in our implementation. We also show some tips and tricks to solve some
non-trivial problems encountered based on our practical experience.

The portal deals with tenant life-cycle, when tenant joins or leaves the trial, provisioning of individual services, resource
isolation between services, and user management independent of individual services.
The service developer can create tenant specific config or data, monitoring and billing. It can also require service specific user
profile beyond the basic profile needed by the portal.
A service developer, which is a small team or external partner, creates and registers a service with the portal. It provides
information about the instances to be used with the service, e.g., a VoIP system could include machine instances for a web
server and a media relay.
It maps the provisioning API of the portal, e.g., when a new VoIP instance needs to be launched, it could launch the specific
machine instances for the web server and media relay, if needed.
The developer can create service specific billing profiles, and define tenant specific access control. It can define resource
usage limits per tenant. And resource rules, e.g., say the media relay can handle 1000 users, and if a tenant has more users,
then create more instances of the relay.
The developer can also define resource redundancy for different components of the system, e.g., use separate web server and
data base for different tenants but share the media relay if needed.
A user can signup as a tenant adiminstrator. By default the first email in a domain becomes the admin for that domain's tenant
group. The tenant admin provides billing information, e.g., credit card, so that all the resource usage of the tenant group is
billed to the tenant.
The admin essentially represents the customer, and signs any licensing or NDA. It can moderate the users permissions within
that tenant group. Finally it can launch individual services for its tenant group and enable monitoring or billing for its users.
A regular user, during signup, fills the initial user profile on the portal, and later service specific user profile as needed. He can
visit the service link or app from the portal website as I showed in the demo.

Next, I will talk about, in further detail, some of the self-service and multi-tenancy aspects of the portal architecture.
The paper describe the necessary building blocks to enable self-service multi-tenancy. It identifies various interfaces for service
provisioning and monitoring. One thing to note is that billing is kept outside the purview of service developer or portal, but
necessary interfaces enable the billing mobile to get the resource usage data.

Click to see a demo video

file:///Users/kundan/Desktop/personal/talk-alice/demos/demo.mp4


Here I will give an high level list of what the paper describes, but if you are interested in how, please read the paper.

Particular emphasis is on security and loose coupling of services and their components. For example, in a VoIP system, if a
SIP gateway is used, it should be possible to easily replace the gateway with that from another vendor, without breaking rest of
the system.
Separting the portal from the service allows keeping the portal simple, and still be able to handle a wide range of services. In
particular, we want to allow bring-your-own-app or -service model, where teams within Avaya can create a service without
cloud consideration, and make it cloud ready easily using the ALICE guidelines. Some specific set of guidelines are listed in the
paper.
This is unlike a PaaS model, where the service must be modified to fit a particular platform. In our case such modification is
expensive, particularly when the service developer is not sure whether to productize the app or not, before an initial customer
trial.

So what is different in this from what's out there?

First, ALICE is like software-as-a-service model, but instead of just one service, it is an architecture to allow many experimental
services for trial. The architecture is suitable for organizations that churn out many apps or services and have many small or
medium businesses as customers. The services are generally trusted by the portal.
These services are assumed to be independent, hence integrated service provisioning and monitoring are not done. This works
for existing small and medium businesses requirements.
Our focus is on connection driven services, particular for self-service multi-tenancy. The provisioning and monitoring
requirements and constraints are different than existing data driven cloud services.
A number of responsibilities are delegated from the portal to the service developer. This keeps the portal manageable, while

Paper describes...
How does multi-tenancy impact the portal?
or an inidvidual service?
How does service developer register and configure a service?
How does tenant admin signup and enable services?
How does user visit tenant specific service from the portal?
What are available responsibilities?
What responsibilities lie with the portal vs. the service developer?
How is self-service enabled for service developer and tenant admin?

Emphasis on...
Security, loose coupling
Separation of portal from service.
Bring your own app vs. fit to platform (PaaS).
High level usage attributes.

What's different?
SaaS, but not just one service
Services are independent
Focus on connection driven services
Delegate to service developer
Billing to tenant admin
not service developer or end user



A number of responsibilities are delegated from the portal to the service developer. This keeps the portal manageable, while
moving some complexity to the service developer. Thus, the service developer can best decide how to handle those, e.g., for
multi-tenancy, the provisioning API could be mapped to a multi-instance one within a specific service.
Unlike existing cloud model, where the service developer or end user are usually billed for the service, our system attempts to
bill the tenant admin. This is particularly important for our set up where individual developer teams do not want to handle billing,
and tenant users and service developers are decoupled from the billing aspect.

I have talked about the six specific services currently hosted in ALICE. Each of these services in turn include multiple servers.
This shows the hosted architecture of the current implementations.
It uses Amazon virtual private cloud for some crucial services such as authentication or VoIP trunking. Some services may
interconnect with third-party services, e.g., for storage or messaging, or even an on-premise VoIP gateway of the customer, in
a hybrid cloud model.

Notes on services
1. Independent servers and DB,

repeat for cross-app
2. Distributed,

cloud, on-premise, hybrid
3. multi-tenant vs -instance
4. Browser, mobile app,

thin-client vs. rich endpoint




