
International Journal of Semantic Computing
� World Scientific Publishing Company

1

USER REACHABILITY IN ISLANDS OF WEBRTC COMMUNICATION APPS

KUNDAN SINGH

Avaya Labs Research, 4655 Great America Parkway
Santa Clara, CA 95054, USA

singh173@avaya.com
http://kundansingh.com

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Recent progress in Web Real-Time Communication (WebRTC) promotes multi-apps environment
by creating islands of communication apps where users of one website or service cannot easily
communicate with those of another. We describe the architecture and implementation of a multi-
platform system to do user reachability in multiple communication services where users decide how
they want to be reached on multiple apps, e.g., in an organization that has voice-over-IP, web
conferencing and messaging from different vendors. We argue for user and endpoint driven
reachability policies and cross-app interactions, instead of pair-wise service federation or global
location service. Our architecture separates the user contacts from reachability apps, and has several
independent and non-interoperable WebRTC-based apps for two-way and multi-party multimedia
communication. Our software is implemented using HTML5 and JavaScript, and using a cross-
platform development tool, runs as native apps on mobile as well as personal computers. Our
flexible implementation can be used for enterprise or personal communications, or as a white-labeled
app for consumers of a business.

Keywords: system design; mobile app; user reachability; WebRTC; caller policy; cross-platform.

1. Introduction

Today’s communication systems often create silos or islands of communication where
users of one service cannot easily talk to that of another. A typical user can be reached
via email, instant messenger, office or personal phone number, one or more social
network, and/or on audio and video collaboration apps such as Skype or Hangout. In such
multi-apps environment, user reachability is often done manually via user presence and
iteration, e.g., check if the user is online on Gtalk or Yahoo before sending a message
there, or try Hangout video with fallback to phone.

WebRTC (Web Real-Time Communication)[4] is an emerging technology that allows
plugin-free browser-to-browser audio and video flows. It basically enables a website to
quickly become a standalone communication service provider. This creates too many
such islands, each controlled by a WebRTC capable website, and further encourages this
silos behavior. Many websites are already using WebRTC and the number is growing.
These websites often require their users to only use the site specific apps, on web or
mobile, and do not interoperate with other websites, even though such web services often

Copyright (c) Word Scientific Publishing Company, 2016. This is the author’s copy of a paper accepted
in International Journal of Semantic Computing. Please cite as follows:
K. Singh, “User reachability in islands of WebRTC communication apps”. International Journal of Semantic
Computing. Vol 10, No 01, pp-73-99 (2016). https://doi.org/10.1142/S1793351X16400043

2 Kundan Singh

have similar features of web conferencing or click-to-call. However, a user likes to reach
and be reached from her people irrespective of the service or device, and be able to select
the best available mode, device or app, e.g., use text message in noisy environment.

Past attempts to bridge the communication islands using pair-wise federations, global
location service or multi-protocol clients are largely insufficient to tackle the growing
number of WebRTC apps and services from a wide range of competing vendors. The
emerging multi-apps communication environment is hard to interoperate or federate
globally.

Our approach to bridge the gap, and to automate and simplify user reachability in
such multi-apps environment is to decouple the contacts from communication apps.
Contacts are managed by the user, or dynamically injected by her context, e.g., current
browsing or calendar. We have developed such an app, Strata Top9, which is a front-end
to launch and interact with other apps to reach a user on voice, video or text. The user
independently installs the communication apps from various services. Strata determines
the right app with automatic fallback, e.g., use the video app, and if fails, try a phone call.

We have also developed cross-platform communication apps using WebRTC to
initiate a video call, join a conference or an upcoming meeting from calendar, discover
and connect with other local users, or translate between speech and text modes. Our apps
use existing services based on Avaya’s IP office, Conferencing or Media Server, or for
endpoint driven apps, a Resource Server. They focus on mobile usability, but can also be
installed as native desktop apps or accessed in a browser.

We describe the architecture and implementation of this multi-apps user reachability
using dynamic contacts and user driven policies. The paper contains motivational use
cases (Section 2), differences from related work (Section 3), pieces of the system
architecture (Section 4), and description of various communication apps (Section 5).
Implementation details of various aspects of these apps including cloud hosting, cross-
platform development and resource-based software architecture are presented in Section
6. Finally, we present our conclusions in Section 7.

2. Motivational Use Cases and Requirements

People use multiple communication apps due to device constraint, personal preference,
enterprise policy, etc., e.g., Facetime on iOS vs. Hangout on Android, Facebook for
friends vs. messaging or Voice-over-IP (VoIP) in office. In both personal and business
communications, many users can be reached in multiple ways, on different apps, devices
or communication modes, e.g., with multiple Unified Communication (UC) and
messaging systems from different vendors seen in hospitals and banks today.

Consider the scenario in Fig.1 with three communication services and ten users
connected to some of these. People are on multiple services, e.g., Gail on the hospital
phone number and the public video call app. Richard (on left) uses a social app to reach
his friends, some of whom work at First Hospital. The dotted arrows show the caller or
receiver’s preferred mode, e.g., Bobby likes to receive email; Richard prefers video to

User Reachability in Islands of WebRTC Communication Apps 3

reach Kathy. Contacts in Richard’s app show their preferred modes, or undefined “?” for
pending contact requests.

Alice’s app (right) downloaded from the First Hospital’s website is pre-populated

with important contacts of on-call nurse and billing department. They automatically
update as the staff changes shift, indicating who will receive the call, and in what mode.
In automatic fallback, if Alice’s video call fails to the on-call nurse, Maya, the app tries
to reach her phone. The patient can fill the empty slots with her pediatrician or primary
care provider, or put other dynamic contacts, e.g., “Billing/Ace HMO” to directly reach
the right person, unlike navigating voice prompts; or keywords “pregnancy, natural” to
reach a nurse with matching skills. The contact picture can instead show dynamic
content, e.g., next calendar meeting, live video of the doctor, or periodic snapshots from
her webcam to show if she can receive a video call. The contact may be non-person, e.g.,
meeting bridge; and may not be call or text reachable, e.g., click to open/edit a shared
document or personalized webpage. Important system requirements to support such use
cases are:

1. Multiple communication apps and services, independent of each other and of the
contact list.

2. User driven reachability decisions by caller and receiver, besides any service
enforced reachability policies.

3. Diverse multi-platform reachability apps; selection of a specific app per call attempt.
4. Automatic fallback of apps, devices or modes; either caller or receive can set the

preferred or required mode.

Richard
(on social app)

Alice
(on First Hospital’s app)

Hospital video
Conferencing

 service

Hospital
phone system

Public video
call service

Bobby

Kathy

Kundan

Maya

Alesha

Bhalla

Gail

Paul

Fig.1. Example containing multiple services and several user reachability scenarios. There are two screenshots
of our app: the social app on left and a white-labelled app customized for a fictitious First Hospital on right.

4 Kundan Singh

5. Minimum reachability via phone and email; e.g., when a doctor accepts the contact
request from his patient, he gives a personal guarantee to respond in a timely
manner.

6. Asymmetric contacts; e.g., a doctor does not have to add his patients in his contact
list, to keep the list small.

3. Background and Related Work

Voice communication and email have historically provided universal reachability via
phone numbers and email addresses. Today’s communication tools of VoIP, Instant
Messaging (IM), on web, or over-the-top apps are often based on open protocols, albeit in
a service provider’s “walled garden”, which hinders reachability on another service, or
locks the ecosystem [1][2][3]. WebRTC [4] for plugin-free browser-to-browser
communication further makes it easy to create such silos [8]. Past user reachability efforts
roughly fall under three overlapping categories: pair-wise federation, global location
service or multi-protocol apps.

Pair-wise federation works for a few popular services, but does not scale with the
growing number of WebRTC websites [5][6][7][8]. Lack of incentive to providers or less
flexibility in server-side translation further hinders this approach. Projects like hookflash
[24], &yet [25] and matrix.org [26] are emerging to provide global WebRTC signaling
and location services. Convincing websites to use them or change apps to follow their
APIs is hard; so they tend to form more isolated ecosystems. SigOfly [9] dynamically
downloads the JavaScript code from the target’s app provider for cross-service
authentication and reachability, but requires the websites to use its APIs. Moreover, this
approach does not work for installed mobile apps.

Pidgin and Trillian are multi-protocol apps. Due to lack of a signaling protocol
specification in WebRTC – every site can implement its own call setup – such efforts are
impractical with growth [7]. Both Session Initiation Protocol (SIP) and Extensible
Messaging and Presence Protocol (XMPP) allow external protocol reachability [10][11],
e.g., if lookup resolves to a mailto or http URL (Uniform Resource Locator), the caller is
redirected to open an email or web client. These are not popular in today’s proxy-focused
services. User specified reachability with time-of-day, calendar or presence [10][12], or
fine-grained user preferences to select mobility or mode [13][14][15] are known. These
existing systems based on multi-protocols reachability do not work when, say, a SIP
provider allows only its own app or device to connect to its service. In practice, existing
multi-protocols reachability is not the same as the desired multi-apps.

We conclude that we are in a multi-services and multi-apps environment which is

very hard to interoperate or federate globally. Thus, solving user reachability with user

service1 service2

service3

app1
app2

app1
app3

app1
app2
app3

app2
app3

Fig.2. Reachability: pair-wise service federations vs. user driven apps in the endpoint.

User Reachability in Islands of WebRTC Communication Apps 5

driven apps in the endpoint is a viable option. Unlike pair-wise service federation, we let
the user select her reachability apps (Fig.2); this freedom promotes innovation. Toutain et
al [8] realize that users are overwhelmed by the number of communication apps and need
a simple way to reach their contacts. They conclude that the user’s contacts must be
independent of the services. Unlike ours, there is no implementation, and it proposes to
interoperate identity management to tie the user presence to the contact list. Our app does
not include presence, and with no global identity service, is easier to deploy or scale.

We use web-style code for call policy, unlike endpoint behavior in Extensible
Markup Language (XML) [12]. Separating data from app logic is well studied [27][28].
Our use of resource-based software architecture continues from [16][17][18]. The ability
to launch external apps is inspired by the now discontinued webintents [19]; albeit
extended beyond a single device using shared data. In summary, ours is a pragmatic way
to deal with emerging WebRTC-based systems and covers multiple modes, devices and
non-interoperable apps even if on the same protocol. Our work is a continuation of [21]
to include the implementation details of the resource-based software, cross-platform
development, and cloud and mobile challenges and techniques.

4. System Architecture

We describe the individual pieces of our system such as separation of contacts and
reachability apps, cross-apps interactions, on-demand reachability and caller policies.

4.1. Important definitions

Communication mode is one of video, phone or message. We use voice and phone
interchangeably; phone does not mean a phone device, but may be a voice call on a
softphone. Video or phone indicates real-time interaction. Message covers real-time as
well as asynchronous apps, e.g., text chat vs. email, short message service (SMS), and
voice/video messages. An app may have multiple modes, some limited by platform, e.g.,
no WebRTC video on Safari/iOS.

Communication app is typically a standalone application on desktop and/or mobile,
or even in a browser. It may be limited by device or network, e.g., business IM only on
Virtual Private Network (VPN). An app is often tied to a service: a VoIP provider or
hosted conference system. We use service and app interchangeably.

User reachability is defined as the ability to reach a user on one or more
communication apps or devices. We also refer to email clients and phones as apps,
although not controlled by our architecture. A reachability item is a triplet of mode, app
and target value, e.g., VoIP address, phone number, or click-to-call or conference URL.
A reachability list can have items on the same app or mode as shown below. The value is
interpreted by the app, e.g., (1) could become tel:+18002223333,,13001234# in that
conference service, and (3) could be sms:+14151234567.

(1) {"mode":"phone", "app":"Scopia", "value":"13001234"}
(2) {"mode":"phone", "app":"Phone", "value":"+14151234567"}
(3) {"mode":"message", "app":"Phone", "value":"+14151234567"}

6 Kundan Singh

4.2. Separating contact list from communication apps

This separation is crucial to support multiple diverse apps. Fig.3 shows that the user’s
contacts can be populated in many ways: by provider, managed by user, imported from
mobile phone, or by user’s context, e.g., discover other app users in a hotel guest room or
emergency situations using local multicast (serverless), or discover other viewers of a
website using a browser extension. A contact item may be static or dynamic. The latter
changes its reachability by time or other factors. It may be a shared group contact, where
reachability is for any, all or some of the group members, e.g., for customer support or
group meetings. It may be auto-populated by data mining, e.g., of email/IM to find my
frequent/recent contacts, or by phrase “I will get back”; or from an email thread or invite
group.

We consider two types of apps: dialers and communicators (Fig.3). A dialer only

does outbound interaction request. Once launched it does not return to the contact list,
except on failure. A communicator can return to the contacts app for intermediate
decisions or to apply policy on received requests.

4.3. Cross-app interaction and handoff

A dialer app usually registers as a protocol handler, e.g., a mailto or tel URL open the
native email or phone client. A communicator is either separate or integrated with the
contacts to simplify inter-app messages. A provider’s dialer app is often used as is. A
communicator requires changes to separate the call setup and conversation; e.g., a
softphone that informs the contacts app on incoming call, and proceeds on approval. The
user may change the mode to message (Fig.8a), or move it to another app or device,
informing the caller about the change.

IM

contact
list

service

user

device

context

Email
SMS

VoIP

Video

dialer

communicators

Fig.3. Separation of contacts and reachability apps including dialers and communicators.

24hr on call Nurse

my pediatrician

my spouse

from browsing,
on same wifi, ...

Phone

VoIP Web

Fig.4. Call handoff: (a) from one device to another, (b) from one app to another, and (c) call component
handoff, e.g., for screenshare.

User Reachability in Islands of WebRTC Communication Apps 7

Consequently, three types of handoffs in Fig.4 are (a) device, (b) app, or (c) call
component, e.g., move a call to the desktop phone, a video call from desktop to phone, or
share desktop screen in a mobile call or add mobile touch-input white-board to a PC call.

4.4. Loosely coupled resource-based architecture

We use resource-based software architecture that has loosely coupled independent apps
with data-level mash-up [17][18]. As shown in Fig.5, the architecture has five crucial
pieces. First, shared pieces of data or resources are stored in a file-like hierarchy. Second,
the client accesses these resources over a WebSocket and HTTPS connection. Third, a
resource entity of event is often represented in JSON (JavaScript Object Notation), e.g.,
{"name": "Alice Smith", "id": "6521"}. Fourth, the resource service is a simple and light
weight web server backed by a database and supports secure and authenticated data
access and event notifications. Fifth, the client-server API implemented in the JavaScript
client library consists of data access and event notification primitives.

The server stores the resources without knowing its semantics. The app logic in the

client defines the semantics. For example, apps can agree on using /users/{user}/presence
as the user’s presence resource. Then one app subscribes to this resource, and another app
updates it, which triggers an event to the first. The first app can then update the presence
status icon representing that contact user. The server can also transparently forward end-
to-end event notifications, e.g., to send call event or WebRTC signaling data. A resource
path could represent a single record or an ordered list, in which case the list items consist
of the immediate children of that resource path. The resources are owned by the end user
and not by the app, i.e., the user can give access permission of her data to any other app,
without requiring approval from an existing app. More details on application mash-up,
use of WebRTC, and user driven access control are in [17][18].

Our client apps implement many scenarios: voice and video call, conferencing, text
chat, contact list and user reachability. The basic concepts of shared data access and event
notifications available in the resource based software architecture are used to implement
all the application logic in the endpoint, including for user profile, contact list, contact
request, user reachability, call attempt fallback, caller policy, video conferencing, call
membership, text chat, file sharing, and multi-party calls. The contacts and communicator
apps mash-up at the data level, e.g., for received call event, or caller policy access. Data
namespaces enable multi-tenancy and app customization. Implementation details on how
Strata uses the resources for various application logic are in Section 6.

Resource
server

1) Hierarchical resources
2) WebSocket connection
3) JSON message format
4) Web server with database
5) JavaScript client library

app1

subscribe

notify

create users
alice bob

contacts presence

apps
/ (root)

1

2
3

4

app2

update notify

Fig.5. Resource based software architecture.

notify

5

8 Kundan Singh

4.5. Proactive presence vs. on-demand reachability

We prefer on-demand reachability to active user presence, i.e., the caller side tries to
reach the receiver’s reachability items with fallbacks (Fig.6). There are many reasons for
this decision as follows.

(1) Relying on presence fails in a multi-apps environment because email, phone or
conference bridge codes are always present. The question is not whether the user
is available, but where.

(2) Softphones supporting presence often use different protocols that may not be
completely interchangeable via signaling translation.

(3) Presence systems scale poorly due to rich presence traffic, or periodic refresh of
presence soft state on battery constrained or mobile devices.

(4) An online status does not guarantee a call answer, and may require fallback in
any case.

Our desktop app uses persistent WebSocket, on which we may enable presence if

needed. Our mobile app uses WebSocket only when the device is awake, but uses
platform specific low power event channel when asleep, e.g., Google Cloud Messaging
(GCM) on Android. Our contacts app does not use presence, but a launched app such as a
third-party instant messenger can still use it internally to determine if the call will
succeed. The on-demand and active presence are combined in practice.

4.6. User reachability and fallback

Fig.7 shows an example user reachability process when Richard tries to reach Kathy. The
algorithm runs on the caller’s Strata app, but can instead be at the server. The first step is
to resolve any dynamic contact, e.g., to get the next meeting for a calendar contact, or to
map “customer service” to the currently reachable agent. The contact type defines the
tool to resolve, e.g., to extract a bridge number data from calendar. This step is skipped as
it is not a dynamic contact in this example.

Next, all target reachability items are fetched. This does not apply if a specific item is
found in the previous step. Based on Kathy’s email and phone number entered during
signup, three default items are pre-populated: (1) the default communicator app for video,
voice and text, (2) the phone app for voice call, and optionally mobile SMS, and (3) the
email app for message. She may not be available now on Strata, or may be on many
devices, or on her employer’s apps based on Avaya IP office (ipoffice) or Messaging

Fig.6. Reachability: (left) in proactive presence, receiver publishes presence in apps, and the caller knows
which to use before a call attempt, vs. (right) caller tries the apps on demand during call-setup until picked
by the receiver.

app1
app2
app3
app4

app1
app2
app3
app4

User Reachability in Islands of WebRTC Communication Apps 9

(amm). She has already configured all her items before. The items are ordered in
decreasing preference: the default (Vclick) first; phone and email last; and other items
(amm, ipoffice) in between. Receiver can modify the default values or their order if
needed (Fig.8f).

Depending on the mode of the call attempt, the reachability items are sorted and

filtered. Richard may initiate conversation in default mode, say video, by clicking on
Kathy’s contact, or select a specific mode, say video, by click-and-hold on her contact as
shown in the screenshot in Fig.7. The two cases behave differently in our app. The former
falls back to other modes if Kathy is not reachable on video, but the latter fails if the
selected mode is not in the list. In the former, the list is sorted for video, phone and
message, in that order because the preferred mode for this contact is video. In the latter,
items without video are removed.

Next, the optional caller and receiver policies are applied. In this example, Richard’s
caller policy disallows using any phone or email apps when he is traveling, which filters
out those from the list; and Kathy’s receiver policy disallows employer’s messenger and
adds a last resort as her home number to reach her outside office hours.

Finally, the items are attempted with sequential fallback, e.g., if Kathy is offline on
Strata (unreachable via Vclick), try video on ipoffice, and then a phone call to her home
number (a mode fallback). Mode fallback is not done within the same app, e.g., if the
Vclick video call fails, then do not reattempt voice or message on Vclick. However, an

Reach Kathy Green on - or - only on

Resolve dynamic
contact

Lookup to get
targets

Apply caller
policy

Apply receiver
policy

Attempt call Attempt call

customer service => paul@example.net
next meeting => tel:+18001234567,,123#

Sort or filter based
on mode

No phone and email apps when traveling

vclick green@example.net
amm green@office.com

ipoffice 3002
tel +14151234567

mailto green@example.net
 vclick green@example.net

ipoffice 3002
tel +14151234567

amm green@office.com
mailto green@example.net

vclick green@example.net

ipoffice 3002
amm green@office.com

Fallback to home phone and disable
office IM outside 9 to 5 hrs.
 vclick green@example.net
ipoffice 3002

tel +2121234567

failed success

vclick ipoffice

has no
receiver

policy

has no
caller

policy

not
dynamic

already
has

device
info

Fig.7. Example user reachability process in Strata Top9

Screenshot of mode
selection in a call
attempt, instead of
using default mode.

10 Kundan Singh

individual app may support mode handoff or transfer, e.g., an incoming video call in
Vclick can be answered as a voice or message session (Fig.8a).

Typically, fallback can happen only if a call attempt on an app can return an error.
This works for communicators and dialers that can return the result to the contacts app. It
does not work for some dialers, e.g., native phone or email clients opened using a tel, sms
or mailto URL. We have developed a modified phone dialer (Engagement Dialer) using
our VoIP system that can return a result. Multiple line presence is the responsibility of the
app, e.g., Vclick supports it and enables the user to run Strata on multiple devices, where
the first one to answer is connected; whereas the IP Office app logs out the previous
device when the user logs in from a new one.

4.7. User driven policies

User customized reachability order (Fig.8f) works for most people. We also support
programmable policy for finer control. The caller policy is applied to outbound request,
and the receiver one to inbound. They are written in JavaScript-like code with only a few
supported constructs as shown below.

(a) To reach my colleagues, prefer video and avoid my
personal instant messenger.

if (receiver.email =~ "*@office.com") {
 prefer("video");
 exclude("message", "AIM");
}

(b) Always call my cell after office hours irrespective
of caller’s preferred mode, and stop further policy
lines.

if (now.hh >= 17) {
 choose("phone","Phone","+1212123456");
 break;
}

(c) When I am traveling, only receive message mode;
and fallback to my personal messenger service.

if (location.address.country != "India") {
 include("message");
 deprecate("message", "AIM", "alice");
}

The script supports simple as well as nested if-else controls, and a break to stop

further script processing. JSON objects representing the caller, receiver, current time and
location, and comparators and regular expression are used in the policy decision. The
caller and receiver objects contain the user attributes, e.g., user identity, name, preferred
mode and contact’s approval state. The now object has the current time in various
formats, including time zone and UTC (Coordinated Universal Time) data. The location
object has the current device location fetched using HTML5 and Google’s geocoding
APIs (Application Program Interfaces). The app does not retrieve the device’s location
unless the script uses location. Some examples are shown below.
caller {"email": "bob@example.net", "name": "Bob Wilson", "type": "video", "state": "approved"}
receiver {"email": "alice@office.com", "name": "Alice Smith", "type": "phone", "state": "pending"}
now {"YYYY": 2015, …, "hh": 19, "mm": 38, …, "tz": "+07:00", "string": "2015-08-03 19:38:42", …,

"utc": { "time": … }}

location {"address": {"street_number": …, "locality": …, "state": "California", "country": "United States",…,
"short": {"country": "US", …}}}

User Reachability in Islands of WebRTC Communication Apps 11

The script uses some functions to alter the behavior: include, exclude, prefer,
deprecate and choose. Each function takes three parameters: mode, app and target value.
Only choose requires all three, but others treat app and value as optional. These functions
manipulate the reachability list shown in Fig.7. The choose function deletes the list, and
adds only a single reachability item supplied in the function. The include and exclude
functions filter the list to include only desired items or exclude undesired ones. If an
optional parameter is missing, it acts as a wildcard, matching any item. The prefer and
deprecate functions re-order the list to move certain items to the beginning (most
preferred) or the end (least preferred). If all three parameters are supplied, then these two
functions also act as a way to inject one reachability item at the beginning or end of the
list.

Note that these policies apply only during initiation, not in an active call. The policy
engine is currently in the Strata app, and hence, only used if the call is initiated or
received by this app. We have web-based policy script editing, and in future will have
graphical interface with drag-and-drop editing.

5. User Reachability Apps

While the Strata app deals with contacts and reachability policies, it can launch an
individual reachability app to initiate or answer an actual conversation. Our implemented
reachability apps are listed below, and some of them that are based on WebRTC are
shown in Fig.8. These apps cover a wide range of communication scenarios, e.g., client-
server media path vs. peer-to-peer media flows, dialers vs. communicators, experimental
vs. commercial systems, and thin-client vs. thin-server.

Default communicator using Vclick: Vclick [18] is a collection of loosely-coupled
apps that mash up using the resource server and are independent of legacy VoIP systems.
The realization in Strata includes only a subset of apps – for text chat with optional
attachments and speech/text translation, and full mesh WebRTC-based voice/video calls
and conferences (Fig.8a). Section 6 contains more implementation details.

 IP office phone: Avaya IP office is a VoIP system for small and midsize businesses.
We built IP office phone, a communicator app, to connect to this VoIP system to make or
receive voice or video calls. Besides the separate app (Fig.8b), an integrated-to-Strata
version is implemented. Unlike the peer-to-peer media path of Vclick, it anchors the
media path at the server. This is not uncommon in cloud telephony, e.g., for media
services of recording, interactive voice response or telephony gateway.

Engagement dialer: It allows dialing out a phone number using the enterprise or
cloud VoIP service of Avaya’s Engagement Development Platform (EDP) and Aura
software suite (Fig.8c). It handles the tel URLs including optional pauses and touch-tone
digits, e.g., tel:+18001234567,,,123#. Thus, Strata can use this to reach phone numbers or
conference bridges, e.g., from tablets or desktops. If the target value of the contact is
empty, it opens a generic phone dialer, allowing the user to enter the target number. This
avoids having to add a one-time phone number in contacts.

12 Kundan Singh

Avaya Media Server (AMS) app: AMS allows multi-party audio and video conference
using RESTful (Representational State Transfer) APIs for control and WebRTC for
media. It does audio mixing and video switching based on active speaker. We built an
AMS dialer app (Fig.8d) that uses the resource server to manage conference membership
and moderator information, and to join the video bridge, without any legacy VoIP
signaling. Implementation details are in Section 6.

Avaya Aura

SIP proxy

phone

VoIP phone

gateway

WebRTC

Ajax

web app

WebRTC

Vclick
web app

(a) Default communicator using Vclick with audio, video and chat.

Resource

Server

Resource

Server

nginx

(e) Screenshot shows current
apps (modules), and links to
some call example.

Avaya Media
Server

(f) User reachability– each with
mode, target value and app.

(d) Dialer to join video conference bridge on Avaya Media
Server.

(b) Enterprise VoIP communicator based on Avaya IP
office using audio and video.

phone gateway

Avaya
IP office

EDP

(c) Dialer (Engagement Dialer app) to reach phone numbers
using Avaya Aura system.

Fig.8. Screenshots and system architecture of the WebRTC apps in
Strata Top9 implementation

User Reachability in Islands of WebRTC Communication Apps 13

Avaya Multimedia Messaging (AMM) app: AMM also has RESTful APIs to enable
multi-party messaging. We built an AMM communicator app to send and receive text
messages from Strata.

Emergency call (SOS) dialer: This dialer extends the Engagement Dialer app to
support emergency calls and has two additional features: supply caller’s location data
using HTML5 geolocation APIs, and receive out-of-band media from the emergency call
taker, e.g., picture or video instructions to help the caller in an emergency situation. The
target number is pre-configured and does not need to be explicitly dialed. The app is
particularly useful for campus use case, where the university configures its local
emergency number and other attributes in its customized Strata app, and the students can
quickly reach the campus security to receive help. Furthermore, such a call automatically
falls back to country specific emergency number, e.g., 911 in USA, if the security staff
could not be reached.

Next meeting/Calendar: The calendar app uses a light-weight proxy to periodically
fetch the user’s calendar from her enterprise mail exchange server, and displays one or
more ongoing or upcoming meetings. The picture cycles through multiple overlapping
meetings if needed, and allows click to join via video or phone, instead of a manual dial-
in of bridge number and code. This dynamic contact maps to a reachability item on AAC
(Avaya Aura Conferencing), Scopia or phone depending on the meeting data. AAC and
Scopia represent a series of Avaya UC products for audio/video conferencing and online
collaboration.

Furthermore, Strata can launch existing apps, e.g., email, phone, third-party Jabber
apps, or conference client apps of AAC and Scopia, or can join their voice bridges. Fig.8e
shows the available modules or apps that are configured. New apps can easily be added
and configured to be launched from Strata. We also have a WebRTC-based Scopia dialer
app for audio video conferencing with limited features, e.g., without application sharing
or text chat.

6. Implementation

Strata Top9 is an app for desktop and mobile to quickly connect with any of the user’s
top 9 contacts. It is a front-end to launch other apps including the ones listed in the
previous section. This section describes some crucial design and implementation aspects
of Strata and the various reachability apps.

6.1. Resources for endpoint-driven app-logic

First, we describe the shared resources used by Strata and Vclick to do endpoint driven
app-logic using the resource-based software architecture. Fig.9 shows the hierarchical
resources, and the description below contains its resource references, e.g., (#6) refers to
/apps/strata/users/email2/inbox/{id}. The resource server can generate random unique id
for a list item resource if not supplied by the app, e.g., a new conversation resource (#12)
at /apps/vclick/chats/{id}. A resource can be created as persistent or transient. A transient
one is automatically deleted when the creator of the resource disconnects from the server.

14 Kundan Singh

For example, user profile (#1) persists, but user’s presence (#3) is implicitly removed by
the server when the app crashes or is closed, indicating offline. A semi-transient resource
is removed when there are no more subscribers to its parent path, e.g., messages (#13) in
an ad hoc chat session are deleted when there are no more participants in that session.

6.1.1. Strata: user profile, contacts, app instances

All the user data in Strata are stored under the tree rooted at the user resource (#0). The
server enforces user permissions and access control as needed. The user profile (#1)
includes the user name, picture bitmap encoded as Base64, and user’s reachability items.
The default profile (#2) is used to create a new user for customers of a tenant group, e.g.,
to import pre-populated hospital contacts. An app instance creates and listens to the user
presence (#3). This is used for sending paging (or session-less) messages, e.g., one-time
text, picture or video. Session messages use Vclick resources described later.

The Top 9 contact items (#4) are numbered from 00 to 08, and record the application

name, mode and contact email or app-specific value. If there are more than nine outbound
contacts, subsequent ones are not numbered. The received contact items (#5) are not
numbered, and record the approval state, mode and sender’s email. The user’s inbox (#6)
is used by other users to send a message to this user, e.g., a contact request or approval
response. The receiver cleans up inbox to avoid duplicate processing. The policies (#7)
allow programmable call initiation in outbound and inbound directions for this user. The
caller app fetches the policy, and applies it at the endpoint with no server-side logic.

When the user logs in, the app creates an instance resource (#8) so that the user’s app
instances can detect and interact with each other about where the user is available. The
native Strata app on Android creates a cloud message authorization resource (#9) for
potential callers. Cloud messaging is described later in this section.

vclick

/apps

strata shell
whoami users

default
profile

email1 email2

profile
presence

contacts

inbox

00 08 …

received

private

policy

caller
receiver

instances gcm

devices

targets

email1
chat

users

chats

email2

presence

423 185 …

messages

1

2

3

9

8

7 10

4

5 6

0

11

Fig.9. Resources used by Strata and Vclick.

players publisher

members

… 618 927

amsbridge

participants

408 379 …

user-263

data

moderator
messages

sessions

sid1 sidn …
events messages

12

13 14

15

21

22

23 24 25

31

Strata

Vclick

Media
server

 Persistent

 Transient

 Semi-
transient

16

User Reachability in Islands of WebRTC Communication Apps 15

6.1.2. Vclick: conversation, video conference, text chat

Strata uses Vclick resources for actual conversations. Vclick creates semi-transient chat
messages without chat history. However, to preserve chat history, Strata creates persistent
messages for text chat or file sharing (#13), and stores a reference (#10) to the last chat
session with the target users. The app takes the responsibility of explicitly deleting older
messages. Vclick uses the presence resource (#11) to send call signaling and chat events.
For compatibility, Strata also creates and subscribes to its own user presence (#11), but
does not subscribe to or show the presence of user’s contacts. However, this design
allows other developers to create a Strata-compatible but presence-enabled app using
these resources, if needed.

All the data related to a single conversation are under chat root (#12). To join a call,
the app creates a member (or participant) resource (#14). A user can join multiple times
with random suffix appended to this resource path. It has additional attributes such as for
camera and microphone state, so that a participant can know when another one is muted.
The publisher and player resources to enable full mesh conference using named streams
are described later in this section.

6.1.3. Centralized conference

Our media server (AMS) app joins centralized conferences. The media server runs in
slave configuration and is controlled by a master application via web APIs. We promote
one of the participant apps to master (or moderator), which controls the server in each
conference. The moderator exchanges signaling events between the media server and
other participants. If the moderator leaves, another one is picked up automatically. This
keeps the app-logic in the endpoint instead of using another application server as master.

The clients use the resource server to co-operatively store call membership data and
to exchange signaling events. All of conference resources are within its root (#21). A
participant creates and subscribes to its call membership (#22). Participant attributes
include mode, mute status and a profile picture. We allow mixed audio and video
participants in a single conference. The participant and moderator resources (#23, #24)
are used to exchange signaling events with each other. The media server identifies each
media flow (or session) by its identifier. A participant listens for its session events. The
events generates by the server are captured by the moderator, and published to the
appropriate session’s event list (#25), and thus, picked up by the right participant.

The resource server has some built-in resources that are used to access certain
authentication data. For example, “who am I?” (#31) is used to determine the namespace
and email address from the connection token of the endpoint.

16 Kundan Singh

6.2. Work flow and app-logic

6.2.1. User signup and login

First, the user signs up on our cloud-based web portal using her email address. If the
Strata app is approved for the user, the portal creates an authentication token on the
resource server for this signup. The user then downloads, installs and launches the app on
desktop or mobile. On the login screen, the user enters her email and password of the
portal, or the auth-token of the resource server. The server supports multiple tokens per
email to help in multi-tenancy. If email is used to login, the app retrieves the auth-token
from the portal for the default tenant group.

Using the token also keeps the resource server independent of any single portal, e.g.,
external partners can obtain their users’ tokens from us, instead of requiring the users to
sign up on our portal. The auth-token is saved on the device, and enables auto-login on
subsequent app launches. The email and password are not saved to reduce the risk of
clear-text password leak from the device. On app startup, if a valid saved token exists, the
app successfully connects to the resource server over WebSocket.

6.2.2. User profile

Once connected, the app fetches the email and namespace (#31) associated with the auth-
token. If the namespace is not default, it applies any tenant specific User Interface (UI)
customizations. It fetches the user profile (#1). If it exists, the login completes. If it does
not, then the user is prompted to create the profile. Fig. 10 shows the screen transitions.

Creating a user profile involves updating the name and phone number, and creating a
profile picture, either uploaded from the file system or captured from the device camera.
The picture is resized and cropped for efficiency, e.g., an uploaded picture of 1800×2400
is center cropped to 1800×1800 and then resized to 140×140. An initial reachability list is
derived based on the email and phone number, and can later be altered on the reachability
page. If the profile is missing, then this login creates it, and the login completes.

After login, Strata creates and subscribes to other resources (e.g., #8, #9), and
initializes other apps, e.g., to login on IP office, or to begin periodic task to fetch calendar
appointments. Finally, it shows the Top 9 page.

6.2.3. Contact list: outbound and received

The Top 9 page has nine contact slots. Both in personal and business communications,
people often initiate conversation with only a handful of contacts on a regular basis or
attend online meetings based on a few workflows, e.g., from their calendar events. Since
it is easy to change a contact slot, the limit of 9 is not an issue for many people. It allows
an aesthetically sound 3×3 layout on a phone, but can be changed to 4×4 or, in landscape
mode, 4×2. Moreover, additional contacts can appear in subsequent pages beyond the
first Top 9 page. User adds a new contact in an empty slot, or changes an existing one. If
the target is not a Strata user, it allows inviting via email.

User Reachability in Islands of WebRTC Communication Apps 17

Login Edit profile Reachabilit My instances

Top 9 contacts

Received contacts

Edit contact Approve received

Select contact

Startup

Fig.10. Screen transition diagram shows high level steps
including login, profile editing, outbound and received
contacts, and calls using various apps. An arrow shows a
transition, starting at the UI control and going to the
target screen. Not all transitions and screens are shown
for brevity.

Modules

Local app
settings …

Incoming
call

Text chat Video call Dialer app …

 Incoming call

App specific
non-person

contact

Video
call

Previous
page

18 Kundan Singh

The Top 9 page includes person and non-person contacts. The received page only
shows those who sent me a contact request. While the Top 9 page has fixed numbered
slots on its first page, the received page items are not numbered. Furthermore, the Top 9
page allows swapping the contact slots, e.g., to move contact of slot #7 to #2. The
receiver accepts or declines the contact request, or changes the approval state at any time
on the received page. A non-person contact can use any app and does not need approval,
e.g., next meeting in calendar or specific dial-in bridge (Fig.10). The user may optionally
select a preferred mode in Top 9 (caller) and/or received (receiver) contact. Caller and
receiver can set preferred mode independently. In a call attempt, the caller and receiver
preferences are used in that order, if available, otherwise a fallback to message mode is
assumed. Moreover, a caller or receiver policy, if available, can override the preference.

Same contact can be in multiple slots, e.g., for different preferred modes, or for
calendar contacts, to show multiple upcoming meetings. User can change the name,
phone number and preferred mode in each slot of the Top 9 page. When Richard adds
Kathy in her Top 9 contact, Kathy’s record is added to Richard’s contacts resource (#4),
and a contact request message is added to Kathy’s inbox (#6) (See Fig.9 for resources).
The inbox message is displayed by Kathy’s app, immediately if online, or the next time
she goes online. When Kathy accepts or declines the contact request, the response
message is added to Richard’s inbox, and Richard’s record is added to Kathy’s received
list (#5). Kathy can change the response later on the received page. When Richard’s app
receives the answer, it shows the notification and updates the record (#4). Both parties
subscribe to each other’s profiles (#1), so that any change is detected and updated in the
contact display. The app also subscribes to all the created contact and received resources,
so that it can maintain display consistency across multiple app instances of this user.

6.2.4. User reachability

The user manages her reachability (Fig.8f) to enable others to reach her when offline on
Strata. The reachability page allows adding, removing, editing and reordering the user’s
reachability items. The reachability data is stored in the resource server. The app specific
data, e.g., IP office login credentials, are in device’s local storage, so that separate app
instances on different devices can be customized, e.g., to use IP office only on the work
computer but not the personal tablet.

6.3. WebRTC for multimedia communication

We use WebRTC for audio/video flows. While Strata does not deal with WebRTC, many
of the reachability apps do. WebRTC enables a web page to establish a peer connection
between two browsers, and transport captured media from one to another.

User Reachability in Islands of WebRTC Communication Apps 19

6.3.1. Background

Fig.11 shows various elements in an asymmetric call with audio and video in one
direction and audio-only in the reverse. A page can capture from local mic and/or camera
using getUserMedia as a local media stream abstraction, create RTCPeerConnection, a
peer-to-peer abstraction between browser instances, and send a media stream from one
browser to another. RTCPeerConnection emits signaling data such as session description
and transport addresses, which must be sent and applied to the RTCPeerConnection at the
other browser to establish a media path. For this, web apps typically use WebSocket or
Ajax over HTTPS between the browser and the web server. This is called the notification
system of WebRTC, and is outside the specification. We use our resource server for
notification. Additionally, media relays and reflective servers are used to discover server
reflexive and/or relayed addresses for media paths crossing network boundaries.

6.3.2. Video widget

In Vclick, all the WebRTC app-logic is hidden in the video widget abstraction [17]. A
video widget can publish or play a named stream. A stream can have one publisher and
zero or more players. A full mesh N-party video conference has N active streams, one per
participant. Each participant publishes its stream, and plays from all others. Thus, each
endpoint uses N video widgets, each representing one participant, where one widget
publishes the local media stream, and the other N-1 widgets play the remote streams. We
use unidirectional media flow in a peer connection; with another publisher-player pair in
reverse. This allows simple application abstraction to implement two-party, multiparty,
one-way and broadcast scenarios.

The publisher and players can come and go in any order. The app correctly creates
connections and media flows without custom call signaling, by merely using the call and
membership resources. The member resource path (#14, in Fig.9) is used as her stream
name. To join a call, the participant creates a publisher resource (#15) for its own stream.
Each of the other participants creates a player resource (#15) for this publisher stream.
The publisher and player resources are used for exchanging WebRTC signaling data, and
they create a media flow from the publisher to every player of that stream.

RTCPeer
Connection

<audio/>

Publish

Play

RTCPeer
Connection

Peer-to-peer media path

<video/>

Microphone

#1 #1

#2 #2 Publish

Play

Fig.11. WebRTC conceptual elements and client server system

Web
Server

STUN/
TURN

Camera Mic
getUserMedia

getUserMedia

20 Kundan Singh

6.4. Cross platform development

We developed Strata and other WebRTC apps in HTML, JavaScript and CSS (Cascading
Style Sheets), and using ChromeApp and Apache Cordova tools and frameworks [20],
ported to native apps on desktop as well as mobile [22]. Our apps can run in four cross
platform scenarios – as web app on desktop and mobile, and as installed app on desktop
and mobile. Creating a cross-platform app using Chrome Cordova Apps (cca) tools is a
three step process: (1) create the web app using HTML5 technologies that runs in a
browser, (2) convert it to a ChromeApp that runs and behaves as a native app on PCs and
laptops, and (3) convert it to a native mobile app, e.g., Android .apk, using Apache
Cordova.

6.4.1. Componentization in HTML5

First, we create the endpoint software as components with separates and loosely coupled
source files. Iframes are widely-deployed form of componentization for web apps [23].
Such components avoid leaking elements of one component into another, and implicitly
clean up any residual state on unload. For example, Engagement Dialer uses a headless
JavaScript library in an iframe, so that when the call terminates, any per-call dangling
references are cleaned up by the browser. Furthermore, iframes based components do not
need single-page-application frameworks which are unsuitable for long lived mobile apps
due to bulky script injection or memory leak buildup over time. Strata can launch an
external reachability app. It can also load it within an iframe if that app is also built using
cca tools. The apps of Fig.8 are actually loaded in iframes within Strata.

6.4.2. ChromeApp restrictions

Next, the web app is converted to a ChromeApp [20], which is a package of web files
that runs as native app the Chrome browser’s rendering engine and its Native Client
plugin. It can be distributed on the Chrome Web Store. It runs as a standalone app, and
cannot interact with or modify the visited web pages. ChromeApp differs from web
pages: it can use new APIs to access local storage, file system or power settings, but
cannot use some features such as cookie, blocking prompts or inline scripts. The images
and resources from external sites must be packaged in or loaded via Ajax.

To do the conversion, we move all inline scripts to a separate script file, e.g., add
event listener instead of inline onclick handler, change external image load to Ajax
instead of setting image source URL, and substitute restricted APIs if possible. A
manifest file specifies the app permissions to use notifications, cloud messaging, location,
storage, or to capture audio, video or desktop, or to reach external web services.

6.4.3. Packaged native mobile app

Finally, we use the cca tools to create a native mobile app, to be uploaded to Google Play
Store (Android) or Apple App Store (iOS). The conversation from a packaged app is
usually seamless for app permissions to appropriate features and plugins in Cordova.

User Reachability in Islands of WebRTC Communication Apps 21

Some features require manually adding the necessary plugins plugins. We use Cordova
plugins to enable audio/video capture, storage, notifications, GCM, idle detection, media
recording, location, device contacts, file handling and transfer, and web intents.

6.4.4. WebRTC in native mobile apps

Although WebSocket is supported in Cordova on Android as well as iOS without a
plugin, WebRTC is included by Cordova only on Android, but is not natively available
on iOS. We use cordova-plugin-iosrtc to enable WebRTC on our iOS app. However, such
plugins have limited capability. For example, Safari’s video element does not support
WebRTC, hence an overlay is created on top to display the real-time video. Such overlay
must be moved and resized whenever the attached video element is altered. The overlay
remains on top, and hence, interferes with CSS z-order. This plugin does not work well
from within an iframe. We send plugin API calls from iframes to the top-level window on
iOS in our JavaScript wrapper library as shown in Fig.12.

6.4.5. Protocol handler to launch apps

We use HTML5 registerProtocolHandler, Android web-intent or iOS app extension to
launch a dialer app when the browser opens, say, a “tel:” URL. For example, Engagement
Dialer, if installed, is launched to call out when the user clicks on (or a mobile app
opens), say “tel:+12123334444”. Similarly, A web+vclick:user@domain link dials-out
and web+vclick: call:call-id joins the call via Vclick.

Such URL-based loosely coupled interactions enable app innovations, e.g., a new app
can replace Engagement Dialer without changing Strata, or a “facetime:” reachability can
be implemented without affecting the other apps.

6.5. Cloud hosting and multi-tenancy

Several server pieces to support Strata are hosted on Amazon cloud, e.g., resource server,
media relay and web portal. We support hybrid deployment, e.g., Strata connected to the

Fig.12. WebRTC APIs from embedded iframes to the top-level window in an iOS app using postMessage.

main window
(index.html)

embeds

iframe
(videos.html)

iframe
(remote video.html)

iframe
(local

video.html)

getUserMedia
window.top.postMessage

event.source.postMessage
result:sid

pc.addStream(sid)
window.top.postMessage

getUserMedia => result:stream

pc.addStream(stream)

22 Kundan Singh

cloud resource server can launch a reachability app to connect to a private media server
or IP office system within an enterprise. Furthermore, if Strata is used within an
enterprise network, it can utilize the corporate directory name search when adding a
contact, or dialing out a phone number via name. Separation of user data from the
application logic further enables us to dynamically change the resource server, e.g., to a
private one when Strata is used within a closed network or VPN.

Strata supports multi-tenancy using data namespaces. The resource server uses
namespaces to partition data; resources of separate namespaces do not interfere with each
other. The same application installer can be distributed to customers of different
businesses such as a hospital, bank or city-hall, but behaves differently like a customized
reachability app for that business, e.g., to reach hospital, bank or city-hall staff. The auth-
token used when connecting to the resource server determines the namespace, which in
turn defines the tenant group, i.e., its tenant data and user interface branding (Fig.1).

6.6. Scalability and robustness

6.6.1. Websocket: keep-alive or not?

Keeping the application logic in the endpoint further simplifies the server, and makes it
scalable and robust. We use client-server WebSocket between the Strata app and the
resource server. This is useful on web pages and desktop apps to receive asynchronous
events such as incoming call. Moreover, periodic keep-alives can keep the connection
active. When it fails, reconnection is attempted. Strata automatic fails over to a secondary
server when the primary fails. However, such long running connections with keep-alives
are not scalable, and do not work on mobile.

To conserve power, long running native mobile apps should not keep persistent
WebSocket connection. Keep-alives or unbounded reconnection attempts are resource
intensive and should be reduced. Our app stops keep-alives when the mobile device goes
to sleep or the app is not in foreground. It uses exponential back-off timer with a cap to
attempt reconnections, and stops them if the failure persists for some time. When the
device becomes active again, it does a one-time check to detect connectivity and to
reconnect if needed.

6.6.2. Cloud messaging on mobile

Without persistent WebSocket connection, the app’s ability to receive asynchronous
events is not trivial. By design, we avoid presence, and furthermore, we use low powered
shared Google Cloud Messaging (GCM) that can receive events even when the device is
asleep. When received, it then wakes up if needed, and connects to the server to fetch any
call data, e.g., incoming invite or received text message. The server informs all the
devices after recovery from a failure, so that the devices that had stopped their
reconnection attempts can now connect. The caller sends the outgoing call invite via both
the resource server and GCM, (using #11 and data of #9 in Fig.9), in case the receiver’s
device is asleep or not connected to the server.

User Reachability in Islands of WebRTC Communication Apps 23

If the caller sends an event via the resource server, the server responds whether the
event was delivered to one or more subscribers. However, when the caller sends a GCM
message, it does not get any feedback about delivery. Furthermore, the WebSocket may
get disconnected not immediately but sometime after the device goes to sleep. This poses
problem of reliably delivering the call invite event to the target within a reasonable time
frame, especially when more reachability items are available for fallback.

To solve this, we delay the fallback to the next reachability item, and we let the caller
re-send the invite via the resource server after a timeout. If the receiver is connected to
the server, the GCM event is ignored as duplicate. If the receiver’s device is asleep and
not connected to the server, the GCM event wakes it up, and the app can then receive and
respond to the second invite on the resource server. If the receiver is not available
anywhere for this reachability item, the delayed fallback after a timeout tries the next
item. Other platforms have alternatives to GCM, and are particularly useful on iOS where
the browser immediately terminates WebSocket when the device goes to sleep.

6.6.3. Signaling and media paths

We use client-server signaling and full mesh media paths in the default communicator.
The resource service scales like a pub/sub system using data partitioning, in-memory
cache and subscriber aggregators. However, due to full mesh media flows, the client
endpoint’s CPU often gets congested with more than 3-party calls. Moreover, the
upstream links of some endpoints may get congested with more than 4 or 5 participants.
In that case, we can switch to a centralized conference server using our AMS app, if it
turns into 4-or-more party call.

Ability to pick up an ongoing call from another device further improves robustness,
e.g., if user is experiencing poor network connectivity on her mobile phone, she can pick
up that call from her desktop.

7. Conclusions and Future Work

We have described the user reachability problem and how it is aggravated in WebRTC-
based multi-apps environment. To solve the problem, we have presented the architecture
and implementation of our multi-platform system consisting of separate contacts and
communication apps. Our Strata Top9 app covers many WebRTC-based cross-platform
apps for VoIP and multimedia conferences. The white-labeled Strata app can be
customized for specific businesses. Many of our apps are focused on enterprise use cases,
but the flexible architecture can include other social apps, e.g., we have created separate
mobile apps for SIP-in-JavaScript and LAN video phone to connect to public VoIP
service, and to discover and connect to others in the same local area network (LAN),
respectively. We are also modifying the Vclick webapp to inject dynamic contacts from
the browsing context to the Strata app, e.g., to show who else is viewing the department
webpage.

Our work shows that many useful features such as user reachability and handoff
across devices or apps are possible with user driven apps. We focus on user driven

24 Kundan Singh

reachability and policy decisions, unlike a global location service or pair-wise federations
to make our system useful in practice for emerging WebRTC apps. Endpoint driven apps
are also useful when local context is needed, e.g., user’s location in dialing out an
emergency call. Separate resource servers can be used for different groups or
organizations. Our resource oriented software architecture allows an app to dynamically
pick the data server independent of where the app is loaded from.

Our apps are implemented with write-once-run-anywhere model, written in HTML5,
JavaScript and CSS, and using Cordova Chrome Apps tools, are ported to wide range of
cross-platform scenarios. We have described the design and implementation of Strata and
various reachability apps with details on the resource based software, cloud hosting for
multi-tenancy and cross-platform development.

In the future, instead of exposing the reachability items to the caller app, we will
create a server side policy engine that will hide any sensitive data. The policy engine
could use other contextual data, e.g., input from Global Positioning System (GPS) could
indicate driving, and thus, disallow message or allow only hands-free call; underlying
network with or without VPN, could affect the call security requirement and disable
certain apps; received call could be transferred to a recordable bridge for accounting or if
calendar shows a shared meeting; mobile data usage could be used to downgrade a video
call to a low bandwidth voice; or background noise level could disallow a voice call, or
trigger speech/text translation. Privacy of such detailed contextual input is paramount.
Thus, a server side policy engine to aggregate and/or filter sensitive data is preferred.

Acknowledgments

The Strata Top9 project is a joint work with Steve Brock, Joyce Fong, Venkatesh
Krishnaswmany and Laurent Philonenko. The following people have helped in
integration or evaluation of some of our implemented apps: Biswajyoti Pal, Thiru
Arjunan, Jaydeep Bhalerao, Gaurav Badge, Ramanuja Kashi, Stephen Whynot, P.
Krishnan and Navjot Singh.

References

[1] J. Grégoire, “On embedded real-time media communications”, Proceedings of the 1st
workshop on all-web real-time systems, Bordeaux, France, Apr 2015.

[2] N. Paterson, “Walled gardens: the new shape of the public Internet”, Proceedings of the 2012
iConference, ACM, 2012.

[3] R. Tworeck, “The walled garden in reverse – open web”, Online, Mar 2013,
http://webrtcstrategies.com/, retrieved Jan 2016.

[4] A.B. Johnston and D.C. Burnett, WebRTC: APIs and RTCWEB Protocols of the HTML5
Real-Time Web, third edition, Digital Codex, 2014, ISBN 978-0985978860.

[5] L. Strand and W. Leister, “A survey of SIP peering”, In proceedings of NATO architects of
secure networks (ASIGE), May 2010, Genova, Italy.

[6] P. Saint-Andre, “XMPP protocol flows for inter-domain federation”, XEP-0238, XMPP
standards foundation, 2008.

[7] Sites that use or demo WebRTC, Online, http://www.webrtcworld.com/ webrtc-list.aspx,
retrieved Jan 2016.

User Reachability in Islands of WebRTC Communication Apps 25

[8] F. Toutain, E. Huérou and E. Beaufils, “On webco interoperability”, Proceedings of the 1st

workshop on all-web real-time systems, Bordeaux, France, Apr 2015.
[9] K. Hänsge, S. Drüsedow, P. Chainho, M. Maruschke, “Signalling-On-the-fly”, in Innovations

in Services, Networks and Clouds (ICIN 2015), Paris, France, Feb 2015.
[10] J. Rosenberg et al., “SIP: session initiation protocol”, RFC 3261, IETF, Jun 2002.
[11] P. Saint-Andre, J. Hildebrand, “reachability addresses”, XEP-0152, XMPP standards

foundation, 2014.
[12] X. Wu, H.Schulzrinne, “Programming end system services using SIP”, IEEE international

conference on communications (ICC), Anchorage, Alaska, May 2003.
[13] J. Rosenberg, H. Schulzrinne, P. Kyzivat, “Caller preferences for SIP”, RFC 3841, IETF, Aug

2014.
[14] M. Boussard et al., “Communication hyperlinks: call me my way”, 13th international

conference on intelligence in next generation networks, (ICIN), 2009, Bordeaux, France.
[15] S. Shanmugalingam, N. Crespi, P. Labrogere, “My own communication service provider”,

International congress on ultra modern telecommunications and control systems and
workshop, 2010, Moscow.

[16] C.Davids et al., "SIP APIs for voice and video communications on the web", International
conference on principles, systems and applications of IP telecommunications (IPTcomm),
Wheaton, IL, Aug 2011.

[17] K. Singh and V. Krishnaswamy, “Building communicating web applications leveraging
endpoints and cloud resource service”, IEEE International Conference on Cloud Computing,
Santa Clara, CA, Jun-Jul 2013.

[18] K. Singh and J. Yoakum, “Vclick: endpoint driven enterprise WebRTC”, IEEE International
Symposium on Multimedia (IEEE ISM), Miami, FL, Dec 2015.

[19] G. Billock, J. Hawkins, P. Kinlan, “Web Intents”, W3C draft, 2013,
http://www.w3.org/TR/web-intents/.

[20] Run Chrome Apps on mobile using Apache Cordova,
https://developer.chrome.com/apps/chrome_apps_on_mobile, accessed Jan 2016.

[21] K. Singh, “User reachability in multi-apps environment”, IEEE International Symposium on
Multimedia (IEEE ISM), Miami, FL, Dec 2015.

[22] K. Singh and J. Buford, “Developing WebRTC-based team apps with a cross-platform mobile
framework”, IEEE Consumer Communication and Networking Conference (CCNC), Las
Vegas, NV, USA, Jan 2016.

[23] T. Leithead and A. Eicholz, “Bringing componentization to the web”,
http://windowsforum.com/threads/211241, retrieved Jan 2016.

[24] R. Raymond, “Open peer: a proposed peer-to-peer signaling for WebRTC”, Hookflash
whitepaper, 2012.

[25] Otalk: an open-source platform for building realtime applications, online, http://otalk.org,
retrieved Jan 2016.

[26] A. Prokop, “Solving the WebRTC interoperability problem”, online, http://www.nojitter.com/
post/240169575/solving-the-webrtc-interoperability-problem, retrieved Jan 2016.

[27] R. Joshi, “Data-oriented architecture: a loosely coupled real-time SOA”, whitepaper, Aug
2004, http://www.rti.com.

[28] T. Berners-Lee, “Socially aware cloud storage”, notes on web design, Aug 2009,
http://www.w3.org/DesignIssues/CloudStorage.html.

