
  

Fig.1. Screenshot of the Vclick conversation 

page in a 3-party call. Each video box or text 
chat is a separate widget with its own URL and 

runs in a separate iframe. 

getUserMedia  

Camera   Mic   

RTCPeer 
Connection  

<audio/>  

Publish   

Play   

RTCPeer 
Connection 

Peer-to-peer 
media path 

<video/>  

getUserMedia  

Microphone  

#1   
#1   

#2   
#2   Publish   

Play   

Web 

Server 

STUN/ 
TURN 

Fig.2. Example of an asymmetric call illustrating 
WebRTC APIs with two media streams, #1 and #2. 

Resource 
server 

1) Hierarchical resources 
2) WebSocket connection 
3) JSON message format 
4) Web server with database 
5) JavaScript client library 

browser 

subscribe  

notify 

create  

users 
alice  bob 

contacts  presence 

app
s  

1 
2 

3 
4 

browser 

update  notify  
notify 

5 

Fig.3. Resource service as a generic lightweight 

data access and notification system for WebRTC. 

/ (root) 

Vclick: Endpoint Driven Enterprise WebRTC 

Kundan Singh and John Yoakum 

Avaya Labs Research 

Santa Clara, CA and Cary, NC, USA 

{singh173,yoakum}@avaya.com 

 

 
Abstract—We present a robust, scalable and secure system 

architecture for web-based multimedia collaboration that keeps 

the application logic in the endpoint browser. Vclick is a simple 

and easy-to-use application for video interaction, collaboration 

and presence using HTML5 technologies including WebRTC 

(Web Real Time Communication), and is independent of legacy 

Voice-over-IP systems. Since its conception in early 2013, it has 

received many positive feedbacks, undergone improvements, and 

has been used in many enterprise communications research 

projects both in the cloud and on premise, on desktop as well as 

mobile. The techniques used and the challenges faced are useful 

to other emerging WebRTC applications. 

Keywords—WebRTC, enterprise communication, web video 

conferencing, resource-based architecture, web applications 

I. INTRODUCTION 

Existing web-based video collaboration systems exhibit one 
or more of these issues: 

Tight coupling: An application that controls the user data or is 
controlled by a single VoIP provider encourages vendor lock-
in and prevents open innovation.  

Thin client: This at a price of a thick server, with bulky, stateful 
or complex service logic, is hard to make scalable and robust.  

Rigid user interface: A rigid video conference dashboard with 
boxes for videos, chats or rosters often has product limitations, 
e.g., only one video per user or one screen share in a meeting. 

Single page applications: An app using a single page or plugin 
framework is hard to maintain due to monolithic code, slow to 
respond due to memory leaks buildup or single execution 
context, and slow to develop around such frameworks. 

Painful first step: The time and effort to successfully make the 
first call are often high due to external dependency, inability to 
call self, or to do multiple logins for the same user. 

We present Vclick to address these issues. Unlike a rigid 
piece of opaque software, it is a collection of many loosely-
coupled web apps. For example, a video call can involve a call 

invitation via a browser extension (first app) that delivers the 
“invite” event and a URL to the receiver, and when clicked, it 
opens the video conversation page (second app) for that call. 
The second app does not care even if another first app is used, 
e.g., an email to deliver that URL. Browser is the only user 
tool, and the user is able to run any app – conference, chat or 
roster – independent of her data storage, e.g., for contacts or 
conversations. The apps or widgets in Vclick run in their own 
separate tabs or iframes (Fig.1), behave independent of each 
other, mash-up at the data level using a thin server, and run the 
entire app logic in JavaScript in the browser.  

 We present Vclick’s distinguishing software architecture 
having a range of collaboration apps: audio/video conference, 
text chat, file, screen or app sharing, shared white-board and 
notepad. We use HTML5, WebSocket [1] and WebRTC (Web 
Real Time Communication) [2] for a pure browser based 
communication which is independent of VoIP systems, e.g., 
using SIP (Session Initiation Protocol) [3]. Section II has 
background and related work.  Section III presents the system 
architecture. Section IV covers the lessons learned and impact 
generated. Section V has conclusions and future work. 

II.  BACKGROUND AND RELATED WORK 

WebRTC [2] enables a web page to establish a peer 
connection between two browsers and transport captured media 
from one to another without a plugin. Fig.2 shows various 
elements in an asymmetric call with audio and video in one 
direction and audio-only in the reverse. Unlike a SIP [3] phone 
that often limits the number of audio or video streams, the 
WebRTC API is more flexible. Like a SIP proxy, WebRTC 
needs a notification system to exchange certain signaling data 
between the browsers. We use resource service [4] as a shared 
data access and notification system. Further details are in [4] 
and summarized in Fig.3. Unlike SIP, we separate the three 
pieces of call invite/answer, session description and transport 
addresses to decouple the call initiation from the conversation. 
The resource semantics are defined by the client apps, e.g., 
/users/bob/presence represents a user’s presence, and any 
change in that is propagated to all its subscribers.  

Copyright © IEEE, 2015. This is the author's copy of a paper that appears in an IEEE conference proceeding. Please cite as follows: 

K.Singh and J.Yoakum, "Vclick: endpoint driven enterprise WebRTC", In proceedings of IEEE International Symposium on Multimedia (IEEE 

ISM), Miami, FL, USA, Dec 2015.  



Numerous web apps using WebRTC and WebSocket have 
emerged in the last few years [5]. The novelty of our work is 
not in creating yet another application, but in the following: 
1. Loosely coupled independent apps, unlike a single rigid 

app, that mash-up at the data-level and create the complete 
user experience (see Fig.4 and 5). 

2. Separation of user data from the app logic: the same app 
can tie to either a public cloud or private (enterprise-only) 
resource server. 

3. Ability to run all the app logic in the browser so that the 
service can easily be made robust and scalable. 

The apps are useful beyond enterprise use, e.g., one author has 
been extensively using the video app for baby monitoring. 

III. SOFTWARE ARCHITECTURE AND IMPLEMENTATION 

A transient app, e.g., video call, shared notepad or text chat, 
in Vclick is launched by its URL with the right parameters. A 
persistent app, e.g., presence or click-to-call, needs a browser 
extension or a native app and runs behind the scenes.  

A. Execution context: browser extension, web page, iframe 

Vclick’s browser extension gives an execution context to 
the persistent apps. The presence app marks the user as 
available to receive calls if her browser is open. Click-to-call 
app modifies any visited web page to inject click-to-call icons 
next to phone numbers. The extension [6] runs in Google 
Chrome, but is not available on mobile platforms. It shows an 
icon next to the browser address bar to initiate a video call. An 
incoming call creates desktop notification to answer or decline. 

When the call initiation app initiates or answers a call, the 
extension opens and keeps track of conversation pages. 
Individual transient apps use iframes as execution contexts, 
including nested ones for participant’s video apps. Using iframes 
creates a modular design, promotes loose coupling (Fig.5), and 
avoids problems of single page apps. A single video can be 
drag-and-dropped from the conversation page to a separate 
browser tab, to run a copy of the video app in that tab to 
display only that participant, independent of the ongoing call. 
Also, new apps are added without changing existing ones, e.g., 
contact list and meeting scheduler are just separate web pages. 

B. Guidelines for presence, call initiation and conversation  

The apps in Vclick (1) do not mix call initiation with 
conversation features, (2) keep all the app logic in the browser, 
and (3) allow multiple registrations from the same user. The 
first point allows a user to join the conversation irrespective of 
how she obtains its URL, and keeps call initiation independent 
of conversation media or widgets – audio, video, text, white-
board and notepad. It also affects some design decisions: call 

control progress or reject reason data are kept inside the call 
initiation app instead of leaking to the conversation page.  

The second principle enables data level mash-up instead of 
pair-wise app-specific integrations, e.g., another user approved 
third-party app can publish her presence, or she could keep 
video and text on her desktop but use her tablet as white-board 
(Fig.4) or another camera source without complex call control. 
An app directly accesses the necessary resources at the server, 
e.g. the conference app monitors the members list to handle 
join or leave, and to add or remove the nested video apps. 

Finally, the third principle enables user login from multiple 
browsers or devices, and calling self for testing. User’s email 
address is her identity. Fig.6 shows the presence apps of two 
browsers creating and subscribing to two child resources under 
user bob. Subsequent call messages such as invite, accept, reject 
or cancel on the target resource, /users/bob/presence, are 
delivered to all the subscribed apps. Once the call is answered 
or declined, a cancel is sent to clear the pending invitation on 
other devices. Unlike INVITE and REGISTER semantics in SIP, 
we use generic data access and notification. It extends to, say, 
multiple call memberships from a user, or many conversation 
apps. Unlike a SIP proxy that sends cancel, we let the caller do 
that, to move the transaction state to the endpoint, and to avoid 
the one-off INVITE with CANCEL semantics at the server. 

C. Login and call initiation message flows 

In Fig.7, the login state indicates if the app has connected to 
the server and posted the presence resource. Clicking the 
extension icon (outbound invite) or receiving an incoming invite 
creates a new invitation state. When the invitation is accepted, 
declined, timed out or cancelled, the state disappears. Messages 
in the same invitation have the same invite-id attributes. For 
outbound call, the app creates a new conference resource and 
sends its path in an invite to the target. When it is delivered to 
one or more targets, the state changes from wait to inviting. For 
incoming invite, a desktop notification is shown, when clicked 
sends an accept back to the inviter. The failure cases are in grey 
arrows, e.g., if the invite is not delivered in wait, or the caller 
gets a reject or closes the conversation page in inviting, then the 

 

Fig.5. Example of loosely coupled apps running in 

browsers that mash-up at the data level, and no single 

app controls the shared user data. 

User  
presence 

Call 
initiation 

Contact  
list 

Video  
conference 

Text chat 

Video  
conference 

Resource 
server 

M
rw
 

M
rw
 

M
r
 

P
w
 

P
n
 

P
r
 

X
y
 X is resource: presence P, call membership M 

y is action: read r, write w, notify n 
Fig.4. Screenshots of Vclick apps on mobile.  

(L) conversation apps with video on tablets.  

(R) a separate tablet is used to join the white-
board app of the call where voice and video are 

on desktop. 

browser 

browser 

browser 
alice 

bob  
bob  

POST + SUBSCRIBE  P
bob

  

NOTIFY P
bob

   {"type": "invite",…} 

NOTIFY P
bob 

  {…"cancel"} 
NOTIFY P

alice
  {…"accept"} 

Fig.6. Registration and call invite message flows. 

P
name

 = /users/name/presence 

  
Resource 

server 

/users       
alice   bob 

8112 4572 5290 

presence presence 

idle  
 

ready  Login  
state:   

 
idle  

  
wait  

  
inviting  

  
done  

  
invited  

Invitation state:   

launch 
conversation 
page 

Clicking on icon creates new 
outbound invitation state for 
adding a new participant 

success failure 

Fig.7. Login (presence) and call initiation state machines in Vclick. 



state transitions to done, and it optionally sends cancel and/or 
shows error. If the receiver closes the incoming notification, 
does not respond in time, or gets a cancel, then it transitions to 
done, and optionally sends reject and/or shows a missed call 
notification, which on click calls back. The conversation app is 
launched in a new browser tab when the state changes to inviting 
or from invited to done. Call disconnection is handled in the 
conversation apps, freeing the initiation app. The extension 
icon can be used to invite more people to make it multiparty. 

D. Multiparty multimedia conversation apps 

The conversation app gets the URL parameters for the 
conference resource path, local member’s identifier and name, 
which are used by the embedded video and text widgets to join 
the call. All membership and message resources are created 
under the conference resource, e.g., /app/vclick/chats/16352. The 
local member-id has a random suffix, e.g., bob-726, so that a 
user can join multiple times in the same call. A member 
resource has media attributes, e.g., mute status. Unlike session 
re-negotiation in SIP, we use shared object attributes for call 
hold or participant mute. An app subscribes to the conference 
and its member resources to detect when something changes. 

The conversation page shows the video conference app, 
and optionally, the text chat. These apps appear side-by-side or 
one-below-another in landscape or portrait orientation. The text 
chat stores the messages under the conference resource instead 
of using a separate chat protocol. It supports emoticons, click-
able link detection, and file sharing using client-side app logic, 

e.g., file drag-and-drop with data URL in the sent messages 
and clickable blob URL in the displayed messages. Other apps 
(notepad, white-board or screen share) are opened in new tabs.  

The conference app has video apps, one per participant. 
Our algorithm automatically adjusts layout in each client when 
the available browser size or videos count changes, or the user 
double clicks to alter the layout mode. It shows picture-in-
picture for two-party, and tile for multiparty. It minimizes the 
blank space to determine the video sizes and positions. Multi-
party can be in tile of same size, or tile+1, with one presenter 
video larger than others. Fig.8 shows the algorithm and, with 
drag-and-drop, double-click and zoom capabilities, supports a 
range of scenarios, e.g., presenter on separate monitor, device 
orientation on tablets, or screen share from another device.  

Fig.9 shows call initiation, transfer or merge via drag-and-
drop to invite to an existing call (1, 2); transfer a member to a 
new call in a new tab (3); create sidebar call with a person in a 
new tab (4); merge (move) a two-party call to another (5); or 
invite (copy) a member from one call to another (6); The copy-
vs-move semantic (5, 6) is non-trivial and needs careful design. 

A video app represents a participant; with one publisher and 
N-1 players in an N-party call. We use unidirectional media flow 
in a peer connection; with another publisher-player in reverse. 
This allows simple app abstraction to implement two-party, 
multiparty, one-way and broadcast scenarios. A publisher or 
player can come or go in any unsynchronized order. The app 
correctly creates connections and media flows without custom 
call signaling, e.g., if a video is moved to a separate tab or call. 
Further video widget interactions are detailed in [4]. 

IV. LESSONS LEARNED AND IMPACT GENERATED 

A. Scalability: signaling and media paths 

We use client-server signaling and full mesh media paths. 
The resource service scales like a pub/sub system using data 
partitioning, in-memory cache and subscriber aggregators. A 
read or write accesses the database, whereas notify may not. The 
browser implicitly mixes audio of apps. Local bandwidth is 
enough for small conferences. CPU quickly gets saturated with 
a 3-party call, and affects quality after that. CPU usage 
depends on the video display size (player), and the streams 
count (publisher). In the future, WebRTC APIs will allow 
adjusting quality and bandwidth. Beyond 3-party, we can 
switch to a centralized media server with one send/receive 
stream per client, further reducing the upstream bandwidth and 
publisher’s CPU usage. Here, active speaker switches or tiles 
videos. A hybrid conference for VoIP interworking with mix of 
full mesh and bridged participants is for further study.  

B. Interoperation with telephony gear 

Our extension can also inject click-to-call icons on phone 
numbers to initiate phone calls via a WebRTC-to-SIP gateway. 

Fig.8. Layout algorithm of video app iframes within a video conference app. 

    
 

    
(a)  Layout of videos as number of participants change. 

(b)  Center zoom-in one video: only 
the area in red-box (view) is visible. 

(c)  Picture-in-picture relative to 
larger video and view. 

 
 

 
 

     vs
. 

vs
. 

    

#rows = 1 #rows = 2 (selected) #rows = 3 

  

#rows = 1  #rows = 2 #rows = 3 (selected) 

View 

space 

View 

space       

(d)  Select tile layout with smallest blank space depending on view. 

      
 

        

(e) Layout change in tile+1 mode in 3-party 
call when view is resized. 

  

  

 
  

   

  

    

(f) Arrows show how and where double-click on a video app changes the  
layout of video conference to picture-in-picture, tile or tile+1 modes. 

Fig.9. Drag-and-drop of video for initiation, 
transfer, merge or participant copy or move. 

Kundan: first tab Kundan: second tab Alan 

 

 

 

3 

1 

5   4 

6 

john@avaya.com 

  

2 

click-to-call icon 



A multiparty call with mix of browsers and phone users is for 
further study. A web app to access a telephony-centric system 
is easy, but fully including a telephony endpoint in a pure web-
centric system such as Vclick is not, due to these differences: 
full mesh vs. centralized, uni/bi-directional flows, or missing 
trickle ICE on existing gateways. Gateways often impose 
artificial restrictions, e.g., at most one peer connection or one 
media stream in a peer connection, or inability to change active 
stream. The endpoint driven call control does not integrate 
easily with session-based telephony where peer-to-peer flows 
must be in a call state. We plan to use server side widgets to 
interoperate and interact with both the resource server and the 
gateway.  

C. Mobile devices and other browsers 

On mobile devices or other browsers without our extension, 
the presence and call initiation apps can run on a web page 
(Fig.4). The user can receive or make calls if that page is open. 
Other issues of running Vclick in a mobile browser follows: 
1) Mobile browsers disallow loading a media file (e.g., ringing) 
without user action (or click). We pre-load the file on startup, 
and play it on call invite. Alternatively, data URL can work. 
The audio element’s loop attribute does not work. 
2) Android devices give square camera capture ratio in portrait 
mode instead of standard 4:3. The videoWidth/Height of the video 
element allows zooming-in to avoid black paddings on sides. 
3) The touch interface is handled separately and sometimes 
differently than mouse, e.g., to drag picture-in-picture video. 
4) WebSocket behavior on device sleep depends on platform. 
Android keeps it alive for some time, and can receive incoming 
call, but iOS disconnects it, making it useless for presence. 

We have also built a native Android app using the Chrome 
Cordova App framework. It uses Google Cloud Messaging 
(GCM) for incoming call when the device is asleep. We use 
cordova-plugin-iosrtc on iOS; which does not work in iframes, so 
we use postMessage to proxy API calls to the top-level window.  

D. Private enterprise-only vs. public cloud deployment 

We have done many deployments including enterprise-only 
(on premise) and public (on cloud). Media path is peer-to-peer 
on premise for privacy, but may be relayed on cloud. The cloud 
resource server has improved security, resource-level access 
control, connection-level authentication transparent to the user, 
and per-device customization for the same user. WebSocket 
and WebRTC sometimes fail on cloud due to enterprise web 
proxies, poor connectivity or server failure. Interference in 
WebSocket handshake and its disconnection by old-style web 
proxies are solved by careful configuration, use of TLS and/or 
reconnection. Our apps reconnect to the resource server using a 
randomized exponential back-off timer with a cap, and failover 
to a secondary server when the primary one fails. The client 
and server both have keep-alives at different layers. The peer 
connection is reattempted if it breaks in a call. Finally, nginx 
reverse proxy terminates TLS, e.g., to verify client certificates. 

E. Use in our other research and development projects 

Our team collaboration system uses Vclick apps to allow 
impromptu interaction among viewers of a shared document, 
and to annotate. The resource server is available in Python, 
PHP and Java, and uses Postgresql, MySQL or an in-memory 

database, respectively. For Avaya Engagement Development 
Platform, we modified the apps to use SockJs, and a single 
multiplexed connection in the top level web page to reduce the 
socket overhead of Ajax. Our Python server is less than 2k lines 
of code on top of Google’s WebSocket implementation. It can 
run on a single virtual machine or laptop. We have reused 
some of the Vclick apps with our Avaya’s IP office and media 
server. Our video presence app uses Vclick, publishes periodic 
snapshots of the page visitors and allows one-click to initiate or 
join a call in a virtual office scenario.  

V. CONCLUSIONS AND FUTURE WORK 

Vclick is a web video collaboration system using HTML5 
web technologies including WebSocket, WebRTC, drag-and-
drop, and data/blob URLs. CSS3 is used for animations and 
layouts; scalable vector graphics (SVG) for whiteboard and 
annotations; localStorage for user configuration; iframe for 
modular widgets; desktop notification for incoming or missed 
call; and browser extension for presence and click-to-call.  

Vclick demonstrates high quality video conferencing with 
only a browser user agent. The signaling primitives of current 
VoIP are re-invented, albeit in a simpler form with endpoint 
driven app logic. The cloud resource server runs on Amazon 
EC2. Our on premise system has been tried by over 80 users, 
and cloud one by about 50 users. Our users have gotten started 
on the system from signup to first successful call in a matter of 
few minutes. Installing the entire software on a Linux, OS X or 
Windows machine with Python takes less than five minutes. 

The resource server deals with only signaling, not media, 
similar to a SIP proxy. To compare with SIP, we will define 
metrics: average message size, message count and types per 
call, the request capacity per type per second, and simultaneous 
persistent connections per server. With horizontal scaling and 
data partitioning, single server performance is secondary. 

WebRTC is still in the early stages with several open 
concerns: whether it will be available consistently across 
browsers and platforms, e.g., Internet Explorer or iOS. ORTC 
may be used without changing the widget interface. Although, 
such factors will affect WebRTC adoption in the future, our 
effort proves that a complete flexible collaboration system is 
possible in a pure-web and browser environment using just a 
light weight resource server and WebRTC-enabled browsers. 

REFERENCES 

[1] The WebSocket API, W3C candidate recommendation, Sep 2012, 
http://www.w3.org/TR/websockets/ 

[2] WebRTC 1.0: Real-Time Communication Between Browsers, W3C 
Working Draft, Feb 2015, http://www.w3.org/TR/webrtc/ 

[3] J. Rosenberg et al, “SIP: Session Initiation Protocol,” IETF RFC 3261, 
2002 

[4] K. Singh and V. Krishnaswamy, “Building communicating web 
applications leveraging endpoints and cloud resource service”, IEEE 
International Conference on Cloud Computing, Santa Clara, CA, Jun-Jul 
2013 

[5] Sites that use or demo WebRTC, WebRTC world, accessed Jul 2015, 
http://www.webrtcworld.com/webrtc-list.aspx 

[6] K. Singh, J. Yoakum and A. Johnston, “Enterprise WebRTC powered by 
browser extensions”, Principles, Systems and Applications of IP 
Telecommunications (IPTComm), Chicago, IL, Oct 2015 


