
Richard (on social app)

Alice

(on First Hospital’s app)

Hospital video
Conferencing

 service

Hospital
phone
system

Public video
call service

Bobby

Kath

Kundan

Maya

Alesha

Bhalla

Gail
Paul

Fig. 1. Example containing multiple services and several user reachability scenarios. There are two screenshots of our
app: the social app on left and a white-labelled app customized for one fictitious business (First Hospital) on right.

service1 service2

service3

app1

app2

app1

app3

app1

app2

app3

app2

app3

Fig. 2. Reachability: pair-wise
service federations vs. user

driven apps in the endpoint.

User Reachability in Multi-Apps Environment

Kundan Singh

Avaya Labs Research

Santa Clara, CA, USA

singh173@avaya.com

Abstract— Recent progress in web real-time communication

(WebRTC) promotes multi-apps environment by creating islands

of communication apps where users of one website or service

cannot easily communicate with those of another. We describe

the architecture and implementation of a multi-platform system

to do user reachability in multiple communication services where

users decide how they want to be reached on multiple apps, e.g.,

in an organization that has voice-over-IP, web conferencing and

messaging from different vendors. Our architecture separates the

user contacts from reachability apps, supports user and endpoint

driven reachability policies, and has several independent and

non-interoperable WebRTC-based apps for two-way and multi-

party multimedia communication. Our flexible implementation

can be used for enterprise or personal communications, or as a

white-labeled app for consumers of a business.

Keywords—system design; mobile app; user reachability; multi-

services; VoIP; WebRTC; caller policy

I. INTRODUCTION

In today’s multi-apps environment, user reachability is
often done manually via user presence and iteration, e.g., check
if the user is online on Gtalk or Yahoo before sending a message
there, or try Hangout video with fallback to phone. WebRTC
(web real-time communication)[4] encourages this behavior
further, although such web services often have similar features
of web conferencing or click-to-call. However, a user likes to
reach and be reached from her people irrespective of the
service or device, and be able to select the best available mode,
device or app, e.g., use text message in noisy environment.

Our approach to automate and simplify user reachability is
to decouple the contacts from communication apps. Contacts
are managed by the user, or dynamically injected by her
context, e.g., current browsing or calendar. We have developed
such an app, Strata Top9, which is a front-end to launch and
interact with other apps to reach a user on voice, video or text.
The user independently installs the communication apps from

various services. Strata determines the right app with automatic
fallback, e.g., use the video app, and if fails, try a phone call.

We have also developed cross-platform communication
apps using WebRTC to initiate a video call, join a conference
or an upcoming meeting from calendar, discover and connect
with other local users, or translate between speech and text
modes. Our apps use existing services based on Avaya’s IP
office, Conferencing or Media Server, or for endpoint driven apps,
a Resource Server. They focus on mobile usability, but can also
be installed as native desktop apps or accessed in a browser.

We describe the architecture and implementation of this
multi-apps user reachability using dynamic contacts and user
driven policies. The paper contains motivational use cases
(Section II), differences from related work (Section III), pieces
of the system architecture (Section IV), implementation of
communication apps (Section V) and conclusions (Section VI).

II. MOTIVATIONAL USE CASES AND REQUIREMENTS

People use multiple communication apps due to device
constraint, personal preference, enterprise policy, etc., e.g.,
Facetime on iOS vs. Hangout on Android, Facebook for friends
vs. messaging or VoIP in office. In both personal and business
communications, many users can be reached in multiple ways,
on different apps, devices or communication modes, e.g., with
multiple unified communication (UC) and messaging systems
from different vendors seen in hospitals and banks today.

Consider the scenario in Fig.1 with three communication
services and ten users connected to some of these. People are
on multiple services, e.g., Gail on the hospital phone number
and the public video call app. Richard (on left) uses a social
app to reach his friends, some of whom work at First Hospital.
The dotted arrows show the caller or receiver’s preferred
mode, e.g., Bobby likes to receive email; Richard prefers video
to reach Kathy. Contacts in Richard’s app show their preferred
modes, or undefined “?” for pending contact requests.

Copyright © IEEE, 2015. This is the author's copy of a paper that appears in an IEEE conference proceeding. Please cite as follows:

K.Singh, "User reachability in multi-apps environment", In proceedings of IEEE International Symposium on Multimedia (IEEE ISM), Miami,

FL, USA, Dec 2015.

Alice’s app (right) downloaded from the First Hospital’s
website is pre-populated with important contacts of on-call
nurse and billing department. They automatically update as the
staff changes shift, indicating who will receive the call, and in
what mode. In automatic fallback, if Alice’s video call fails to
the on-call nurse, Maya, the app tries to reach her phone. The
patient can fill the empty slots with her pediatrician or primary
care provider, or put other dynamic contacts, e.g., “Billing/Ace
HMO” to directly reach the right person, unlike navigating
voice prompts; or keywords “pregnancy, natural” to reach a
nurse with matching skills. The contact picture can instead
show dynamic content, e.g., next calendar meeting, live video
of the doctor, or periodic snapshots from her webcam to show
if she can receive a video call. The contact may be non-person,
e.g., meeting bridge; and may not be call or text reachable, e.g.,
click to open/edit a shared document or personalized webpage.
Important system requirements to support such use cases are:

1. Multiple communication apps and services, independent of
each other and of the contact list.

2. User driven reachability decisions by caller and receiver,
besides any service enforced policies.

3. Diverse multi-platform apps; selection per call attempt.
4. Automatic fallback of apps, devices or modes; either caller

or receive can set the preferred or required mode.
5. Minimum reachability via phone and email; e.g., when a

doctor accepts the contact request from his patient, he
gives a personal guarantee to respond in a timely manner.

6. Asymmetric contacts; e.g., a doctor does not have to add
his patients in his contact list, to keep the list small.

III. BACKGROUND AND RELATED WORK

Voice communication and email have historically provided
universal reachability via phone numbers and email addresses.
Today’s communication tools of VoIP, IM, on web, or over-
the-top apps are often based on open protocols, albeit in a
service provider’s “walled garden”, which hinders reachability
on another service, or locks the ecosystem [1][2][3]. WebRTC
[4] for plugin-free browser-to-browser communication further
makes it easy to create such silos [8]. Past user reachability
efforts roughly fall under three overlapping categories: pair-
wise federation, global location service or multi-protocol apps.

Pair-wise federation works for a few popular services, but
does not scale with the growing number of WebRTC websites
[5][6][7][8]. Lack of incentive to providers or less flexibility in
server-side translation further hinders this approach. Projects
like hookflash, &yet and matrix.org are emerging to provide
global WebRTC signaling and location services. Convincing
websites to use them or change apps to follow their APIs is
hard; so they tend to form more isolated ecosystems. SigOfly [9]
dynamically downloads the JavaScript code from the target’s
app provider for cross-service authentication and reachability,
but requires the websites to use its APIs. Moreover, this
approach does not work for installed mobile apps.

Pidgin and Trillian are multi-protocol apps. Due to lack of a
signaling protocol specification in WebRTC – every site can
implement its own call setup – such efforts are impractical with
growth [7]. Both SIP and XMPP allow external protocol
reachability [10][11], e.g., if lookup resolves to a mailto or http
URL, the caller is redirected to open an email or web client.

These are not popular in today’s proxy-focused services. User
specified reachability with time-of-day, calendar or presence
[10][12], or fine-grained user preferences to select mobility or
mode [13][14][15] are known. These existing systems based on
multi-protocols reachability do not work when, say, a SIP
provider allows only its own app or device to connect to its
service. In practice, existing multi-protocols reachability is not
the same as the desired multi-apps.

We conclude that we are in a multi-services and multi-apps
environment which is very hard to interoperate or federate
globally. Thus, solving user reachability with user driven apps
in the endpoint is a viable option. Unlike pair-wise service
federation, we let the user select her reachability apps (Fig.2);
this freedom promotes innovation. Toutain et al [8] realize that
users are overwhelmed by the number of communication apps
and need a simple way to reach their contacts. They conclude
that the user’s contacts must be independent of the services.
Unlike ours, there is no implementation, and it proposes to
interoperate identity management to tie the user presence to the
contact list. Our app does not include presence, and hence, with
no global identity service, is easier to deploy or scale.

We use web-style code for call policy, unlike endpoint
behavior in XML [12]. Our use of resource-based software
architecture continues from [16][17][18]. The ability to launch
external apps is inspired by the now discontinued webintents
[19]; albeit extended beyond a single device using shared data.
In summary, ours is a pragmatic way to deal with emerging
WebRTC-based systems and covers multiple modes, devices
and non-interoperable apps even if on the same protocol.

IV. SYSTEM ARCHITECTURE

A. Important definitions

Communication mode is one of video, phone or message.
We use voice and phone interchangeably; phone does not mean
a phone device, but may be a voice call on a softphone. Video
or phone indicates real-time interaction. Message covers real-
time as well as asynchronous apps, e.g., text chat vs. email,
SMS, and voice/video messages. An app may have multiple
modes, some limited by platform, e.g., no WebRTC video on
Safari/iOS.

Communication app is typically a standalone application on
desktop and/or mobile, or even in a browser. It may be limited
by device or network, e.g., business IM only on VPN. An app
is often tied to a service: a VoIP provider or hosted conference
system. We use service and app interchangeably.

User reachability is defined as the ability to reach a user on
one or more communication apps or devices. We also refer to
email clients and phones as apps, although not controlled by
our architecture. A reachability item is a triplet of mode, app
and target value, e.g., VoIP address, phone number, or click-to-
call or conference URL. A reachability list can have items on
the same app or mode as shown below. The value is interpreted
by the app, e.g., (1) could become tel:+18002223333,,13001234#
in that conference service, and (3) could be sms:+14151234567.

(1) {"mode":"phone", "app":"Scopia", "value":"13001234"}
(2) {"mode":"phone", "app":"Phone", "value":"+14151234567"}
(3) {"mode":"message", "app":"Phone", "value":"+14151234567"}

IM

contact

list

service

user

device

context

Email

SMS

VoIP

Video

dialers
communicators

Fig. 3. Separation of contacts and reachability
apps including dialers and communicators.

24hr on call Nurse

my pediatrician

my spouse

from browsing,
on same wifi, ... Fig. 4. Call handoff: (a) from one device to

another, (b) from one app to another, and (c) call
component handoff, e.g., for screenshare.

Resource
server

1) Hierarchical resources
2) WebSocket connection
3) JSON message format
4) Web server with database
5) JavaScript client library

app1

subscribe

notify

create

users
alice bob

contacts presence

apps
/ (root)

1
2

3
4

app2

update notify

Fig. 5. Resource based software architecture.

notify

Phone

VoIP

Web

5

app1
app2
app3

Fig. 6. Reachability: (left) in proactive presence,
receiver publishes presence in apps, and the caller
knows which to use before a call attempt, vs.
(right) caller tries the apps on demand during call-
setup until picked by the receiver.

app4

app1
app2
app3
app4

B. Separating contact list from communication apps

This separation is crucial to support multiple diverse apps.
Fig.3 shows that the user’s contacts can be populated in many
ways: by provider, managed by user, imported from mobile
phone, or by user’s context, e.g., discover other app users in a
hotel guest room or emergency situations using local multicast
(serverless), or discover other viewers of a website using a
browser extension. A contact item may be static or dynamic.
The latter changes its reachability by time or other factors. It
may be a shared group contact, where reachability is for any,
all or some of the group members, e.g., for customer support or
group meetings. It may be auto-populated by data mining, e.g.,
of email/IM to find my frequent/recent contacts, or by phrase
“I will get back”; or from an email thread or invite group.

We consider two types of apps: dialers and communicators
(Fig.3). A dialer only does outbound interaction request. Once
launched it does not return to the contact list, except on failure.
A communicator can return to the contacts app for intermediate
decisions or to apply policy on received requests.

C. Cross-app interaction and handoff

HTML5 registerProtocolHandler, Android web-intents or iOS
app extension is used to open an external dialer, e.g, a mailto or
tel URL open the native email or phone client. A communicator
is either separate or integrated with the contacts to simplify
inter-app messages. A provider’s dialer app is often used as is.
A communicator requires changes to separate the call setup and
conversation; e.g., a softphone that informs the contacts app on
incoming call, and proceeds on approval. The user may change
the mode to message (Fig.8a), or move it to another app or
device, informing the caller about the change. Consequently,
three types of handoffs in Fig.4 are (a) device, (b) app, or (c)
call component, e.g., move a call to the desktop phone, a video
call from desktop to phone, or share desktop screen in a mobile
call or add mobile touch-input white-board to a desktop call.

D. Loosely coupled resource-based architecture

Our architecture has loosely coupled independent apps with
data-level mash-up. We use the resource service [17][18]
hosted on Amazon EC2 for contacts and communicators. It is a
simple web server supporting secure and authenticated data
access and event notification (Fig.5). It stores pieces of data or

resources in a file-like hierarchy without knowing its semantics.
The app logic in the client defines the semantics, e.g., one app
subscribes to a user’s contacts at /users/{user}/contacts and
another app updates, triggering an event to the first. The server
transparently forwards end-to-end messages, e.g., to send call
event or WebRTC signaling data. More details on mash-up,
use of WebRTC, and user driven access control are in [17][18].

Our client apps implement many scenarios: voice and video
call, conferencing, text chat, contact list and user reachability.
The contacts and communicator apps mash-up at the data level,
e.g., for received call event, or caller policy access. Data
namespaces enable multi-tenancy and app customization.

E. Proactive presence vs. on-demand reachability

We prefer on-demand reachability to active user presence,
i.e., the caller side tries to reach the receiver’s reachability
items with fallbacks (Fig.6). There are many reasons for this
decision as follows. (1) Relying on presence fails in a multi-
apps environment because email, phone or conference bridge
codes are always present. The question is not whether the user
is available, but where. (2) Softphones supporting presence
often use different protocols. (3) Presence systems scale poorly
due to rich presence traffic, or periodic refresh of presence soft
state on battery constrained devices. (4) An online status does
not guarantee a call answer, and may require fallback.

Our desktop app uses persistent WebSocket, on which we
may enable presence if needed. Our mobile app uses WebSocket
only when the device is awake, but uses platform specific low
power event channel when asleep, e.g., Google Cloud Messaging
(GCM) on Android. Our contacts app does not use presence,
but a launched app such as a third-party instant messenger can
still use it internally to determine if the call will succeed. The
on-demand and active presence are combined in practice.

F. User reachability and fallback

Fig.7 shows an example user reachability process when
Richard tries to reach Kathy. The algorithm runs on the caller’s
Strata Top 9, but can instead be at the server. The first step is to
resolve any dynamic contact, e.g., to get the next meeting for a
calendar contact, or to map “customer service” to the currently
reachable agent. The contact type defines the tool to resolve,

e.g., to extract a bridge number data from
calendar. This step is skipped as it is not a
dynamic contact in this example.

Next, all target reachability items are
fetched. This does not apply if a specific item
is found in the previous step. Based on Kathy’s
email and phone number entered during
signup, three default items are pre-populated:
(1) the default communicator app for video,
voice and text, (2) the phone app for voice call,
and optionally mobile SMS, and (3) the email
app for message. She may not be available now
on Strata, or may be on many devices, or on her
employer’s apps based on Avaya IP office
(ipoffice) or Messaging (amm). She has already
configured all her items before. The items are
ordered in decreasing preference: the default
communicator (Vclick) first; phone and email

last; and other items (amm, ipoffice) in between. Receiver can
modify the default values or their order if needed (Fig.8g).

Depending on the mode of the call attempt, the reachability
items are sorted and filtered. Richard may initiate conversation
in default mode, say video, by clicking on Kathy’s contact, or
select a specific mode, say video, by click-and-hold on her
contact. The two cases behave differently in our app. The
former falls back to other modes if Kathy is not reachable on
video, but the latter fails if the selected mode is not in the list.
In the former, the list is sorted for video, phone and message, in
that order. In the latter, items without video are removed.

Next, the optional caller and receiver policies are applied.
In this example, Richard’s caller policy disallows using any
phone or email apps when he is traveling, which filters out
those from the list; and Kathy’s receiver policy disallows
employer’s messenger and adds a last resort as her home
number to reach her outside office hours.

Finally, the items are attempted with sequential fallback,
e.g., if Kathy is offline on Strata (unreachable via Vclick), try
video on ipoffice, and then a phone call to her home number (a
mode fallback). Mode fallback is not done within the same
app, e.g., if the Vclick video call fails, then do not reattempt voice
or message on Vclick. However, an individual app may support
mode handoff or transfer, e.g., an incoming video call in Vclick
can be answered as a voice or message session (Fig.8a, right).

Typically, fallback can happen only if a call attempt on an
app can return an error. This works for communicators and
dialers that can return the result to the contacts app. It does not
work for some dialers, e.g., native phone or email clients
opened using a tel, sms or mailto URL. We have developed a
modified phone dialer (Engagement Dialer) using our VoIP
system that can return a result. Multiple line presence is the
responsibility of the app, e.g., Vclick supports it and enables the
user to run Strata on multiple devices, where the first one to
answer is connected; whereas the ipoffice logs out the previous
device when the user logs in from a new one.

G. User driven policies.

User customized reachability order (Fig.8g) works for most
people. We also support programmable policy for finer control.
The caller policy is applied to outbound request, and the
receiver one to inbound. They are written in JavaScript-like
code with only a few supported constructs as shown below.

(a) To reach my colleagues,
prefer video and avoid my
personal instant messenger.

if (receiver.email =~ "*@office.com") {
 prefer("video");
 exclude("message", "AIM");
}

(b) Always call my cell after
office hours irrespective of
caller’s preferred mode, and
stop further policy lines.

if (now.hh >= 17) {
 choose("phone","Phone","+1212123456");
 break;
}

(c) When I am traveling, only
receive message mode; and
fallback to my personal
messenger service.

if (location.address.country != "India") {
 include("message");
 deprecate("message", "AIM", "alice");
}

The script supports simple as well as nested if-else controls,
and a break to stop further script processing. JSON (JavaScript
Object Notation) objects representing the caller, receiver,
current time and location, and comparators and regular
expression are used in the policy decision. The caller and
receiver objects contain the user attributes, e.g., user identity,
name, preferred mode and contact’s approval state. The now
object has the current time in various formats, including time
zone and UTC data. The location object has the current device
location fetched using HTML5 and Google’s geocoding APIs.
The app does not retrieve the device’s location unless the script
uses location. Some examples are shown below.

caller {"email": "bob@example.net", "name": "Bob Wilson",
 "type": "video", "state": "approved"}

receiver {"email": "alice@office.com", "name": "Alice Smith",
 "type": "phone", "state": "pending"}

now {"YYYY": 2015, …, "hh": 19, "mm": 38, …, "tz": "+07:00",
 "string": "2015-08-03 19:38:42", …, "utc": { "time": … }}

location {"address": {"street_number": …, "locality": …, "state": "California",
"country": "United States",…, "short": {"country": "US", …}}}

The script uses some functions to alter the behavior: include,
exclude, prefer, deprecate and choose. Each function takes three
parameters: mode, app and target value. Only choose requires all
three, but others treat app and value as optional. These functions
manipulate the reachability list shown in Fig.7. The choose
function deletes the list, and adds only a single reachability
item supplied in the function. The include and exclude functions
filter the list to include only desired items or exclude undesired
ones. If an optional parameter is missing, it acts as a wildcard,
matching any item. The prefer and deprecate functions re-order
the list to move certain items to the beginning (most preferred)
or the end (least preferred). If all three parameters are supplied,
then these two functions also act as a way to inject one
reachability item at the beginning or end of the list.

Note that these policies apply only during initiation, not in
an active call. The policy engine is currently in the Strata Top9
app, and hence, only used if the call is initiated or received by
this app. We have web-based policy script editing, and in
future will have graphical interface with drag-and-drop editing.

Reach Kathy Green on - or - only on

Resolve
dynamic contact

Lookup to get
targets

Apply caller
policy

Apply receiver
policy

Attempt call Attempt call

customer service => paul@example.net

next meeting => tel:+18001234567,,123#

Sort or filter
based on mode

No phone and email apps when traveling

vclick green@example.net
amm green@office.com

ipoffice 3002
tel +14151234567

mailto green@example.net
 vclick green@example.net

ipoffice 3002
tel +14151234567

amm green@office.com
mailto green@example.net

vclick green@example.net
ipoffice 3002

amm green@office.com

Fallback to home phone and disable
office IM outside 9 to 5 hrs.
 vclick green@example.net
ipoffice 3002

tel +2121234567

failed success

vclick ipoffice

no-op

no-op

not

dynamic

already

has
device

info

Fig. 7. Example user reachability process in Strata Top9

Avaya Aura

SIP proxy

phone

VoIP phone

gateway

WebRTC

Ajax

web app

WebRTC

Vclick

web app

(a) Default communicator using Vclick with

audio, video and chat.

Resource
Server

Resource
Server

nginx
(f) Screenshot shows
current apps (modules),
and links to some call
example.

Avaya Media
Server

(g) User reachability–
each with mode, target

value and app.

(d) Dialer to

join video
conference

bridge on

Avaya Media
Server.

(b) Enterprise VoIP
communicator

based on Avaya IP
office using audio

and video.

phone gateway
Avaya

IP office

EDP

(c) Dialer

(Engagement

Dialer app) to
reach phone

numbers

using Avaya

Aura system.

Fig. 8. Screenshots and system architecture of the WebRTC apps in Strata Top9 implementation

V. IMPLEMENTATION OF CROSS PLATFORM APPS

Strata Top9 is an enterprise app for desktop and mobile to
quickly connect with any of the user’s top 9 contacts. Both in
personal as well as business communications, people often
initiate conversation with only a handful of contacts on a
regular basis or attend online meetings based on a few
workflows, e.g., from their calendar events. Since it is easy to
change a contact slot, the limit of 9 is not an issue for many
people. It allows an aesthetically sound 3x3 layout on a phone
(Fig.1), but can be changed to 4x4 or, in landscape mode, 4x2.
Moreover, additional contacts can appear in subsequent pages
beyond the first Top 9 page. The user adds a new contact in an
empty slot, or changes an existing one. If the target is not a
Strata user, it allows inviting via email. The Top 9 page includes
person and non-person contacts. The received page only shows
people, i.e., those who sent me a contact request. The receiver
accepts or declines the contact request, or changes the approval
state at any time on the received page. The caller and receiver
can set a preferred mode independently. A non-person contact
can use any app and does not need approval, e.g., next meeting
in calendar or specific dial-in bridge (Fig.1). The same contact
can be in multiple slots, e.g., for different preferred modes, or
for calendar contacts, to show multiple upcoming meetings.

The user manages her reachability (Fig.8g) to enable others
to reach her when offline on Strata. Strata supports many apps
(Fig.8f), and more can easily be added. The reachability data is
stored in the resource server. The app data, e.g., IP office login
credentials, are in device’s local storage, so that separate app
instances on different devices can be customized, e.g., to use IP
office only on the work PC but not the personal tablet.

We developed Strata and other WebRTC apps in HTML,
JavaScript and CSS, and using ChromeApp and Apache Cordova
tools and frameworks [20], ported to native apps on desktop as
well as mobile. The desktop native app runs using the Chrome
browser’s native client plugin. The Cordova framework converts
the web app to a native mobile app, to be uploaded to Google
Play Store (Android) or Apple App Store (iOS). WebRTC is
included by Cordova on Android. We use cordova-plugin-iosrtc
for WebRTC on iOS. Our implemented apps are listed below,
and some are shown in Fig.8.

Default communicator using Vclick: Vclick [18] is a collection of
loosely-coupled apps that mash up using the resource server
and are independent of legacy VoIP systems. The realization in
Strata includes only a subset of apps – for text chat with
optional attachments and speech/text translation, and full mesh
WebRTC-based voice/video calls and conferences (Fig.8a).

IP office phone: Avaya IP office is a VoIP system for small and
midsize businesses. We built IP office phone, a communicator
app, to connect to this VoIP system to make or receive voice or
video calls. Besides the separate app (Fig.8b), an integrated-to-
Strata version is implemented. Unlike the peer-to-peer media
path of Vclick, it anchors the media path at the server.

Engagement dialer: It allows dialing out a phone number using
the enterprise or cloud VoIP service of Avaya’s Engagement
Development Platform (EDP) and Aura software suite (Fig.8c). It
handles the tel URLs including optional pauses and DTMF
digits, e.g., tel:+18001234567,,,123#. Thus, Strata can use this to
reach phone numbers or conference bridges, e.g., from tablets
or desktops. If the target value of the contact is empty, it opens
a generic phone dialer, allowing the user to enter the target

number. This avoids having
to add a one-time phone
number in contacts.

Media Server (AMS) app:
AMS allows multi-party
audio and video conference
using RESTful APIs for
control and WebRTC for
media. It does audio mixing
and video switching based
on active speaker. We built
an AMS dialer app that uses
the resource server to
manage conference
membership and moderator
information, and to join the
video bridge, without any
legacy VoIP signaling.

Multimedia Messaging (AMM)
app: AMM also has RESTful
APIs to enable multi-party
messaging. We built an
AMM communicator app to
send and receive text
messages from Strata.

Next meeting/Calendar: The
calendar app uses a light-

weight proxy to periodically fetch the user’s calendar from her
enterprise mail exchange server, and displays one or more
ongoing or upcoming meetings. The picture cycles through
multiple overlapping meetings if needed, and allows click to
join via video or phone, instead of a manual dial-in of bridge
number and code. This dynamic contact maps to a reachability
item on AAC, Scopia or phone depending on the meeting data.
AAC and Scopia represent a series of Avaya UC products for
audio/video conferencing and online collaboration.

Furthermore, Strata can launch existing apps, e.g., email,
phone, third-party Jabber apps, or conference client apps of
AAC and Scopia, or can join their voice bridges.

VI. CONCLUSIONS AND FUTURE WORK

We have described the user reachability problem and how
it is aggravated in WebRTC-based multi-apps environment. To
solve the problem, we have presented the architecture and
implementation of our multi-platform system consisting of
separate contacts and communication apps. Our Strata Top9 app
covers many WebRTC-based cross-platform apps for VoIP and
multimedia conferences. The white-labeled Strata app can be
customized for specific businesses. Many of our apps are
focused on enterprise use cases, but the flexible architecture
can include other social apps, e.g., we have created separate
mobile apps for SIP-in-JavaScript and LAN video phone to connect
to public VoIP service, and to discover and connect to others in
the same local area network, respectively. We are also
modifying the Vclick webapp to inject dynamic contacts from
the browsing context to the Strata app, e.g., to show who else is
viewing the department webpage.

Our work shows that many useful features such as user
reachability and handoff across devices or apps are possible
with user driven apps. We focus on user driven reachability
and policy decisions, unlike a global location service or pair-
wise federations to make our system useful in practice for
emerging WebRTC apps. Endpoint driven apps are also useful
when local context is needed, e.g., user’s location in dialing out
an emergency call. Separate resource servers can be used for
different groups or organizations. Our resource oriented
software architecture allows an app to dynamically pick the
data server independent of where the app is loaded from.

In the future, instead of exposing the reachability items to
the caller app, we will create a server side policy engine that
will hide any sensitive data. The policy engine could use other
contextual data, e.g., input from GPS could indicate driving,
and thus, disallow message or allow only hands-free call;
underlying network with or without VPN, could affect the call
security requirement and disable certain apps; received call
could be transferred to a recordable bridge for accounting or if
calendar shows a shared meeting; mobile data usage could be
used to downgrade a video call to a low bandwidth voice; or
background noise level could disallow a voice call, or trigger
speech/text translation. Privacy of such detailed contextual
input is paramount. Thus, a server side policy engine to
aggregate and/or filter sensitive data is preferred.

ACKNOWLEDGMENTS

The Strata Top9 project is a joint work with Steve Brock,
Joyce Fong, Venkatesh Krishnaswmany and Laurent
Philonenko. The following people have helped in integration or
evaluation of some of our implemented apps: Biswajyoti Pal,
Thiru Arjunan, Jaydeep Bhalerao, Gaurav Badge, Ramanuja
Kashi, and Stephen Whynot.

REFERENCES

[1] J. Grégoire, “On embedded real-time media communications”,
Proceedings of the 1st workshop on all-web real-time systems,
Bordeaux, France, Apr 2015.

[2] N. Paterson, “Walled gardens: the new shape of the public Internet”,
Proceedings of the 2012 iConference, ACM, 2012.

[3] R. Tworeck, “The walled garden in reverse – open web”, Online, Mar
2013, http://webrtcstrategies.com/, retrieved Aug 2015.

[4] A.B. Johnston and D.C. Burnett, WebRTC: APIs and RTCWEB
Protocols of the HTML5 Real-Time Web, third edition, Digital Codex,
2014, ISBN 978-0985978860.

[5] L. Strand and W. Leister, “A survey of SIP peering”, In proceedings of
NATO architects of secure networks (ASIGE), May 2010, Genova,
Italy.

[6] P. Saint-Andre, “XMPP protocol flows for inter-domain federation”,
XEP-0238, XMPP standards foundation, 2008.

[7] Sites that use or demo WebRTC, Online, http://www.webrtcworld.com/
webrtc-list.aspx, retrieved Aug 2015.

[8] F. Toutain, E. Huérou and E. Beaufils, “On webco interoperability”,
Proceedings of the 1st workshop on all-web real-time systems,
Bordeaux, France, Apr 2015.

[9] K. Hänsge, S. Drüsedow, P. Chainho, M. Maruschke, “Signalling-On-
the-fly”, in Innovations in Services, Networks and Clouds (ICIN 2015),
Paris, France, Feb 2015.

[10] J. Rosenberg et al., “SIP: session initiation protocol”, RFC 3261, IETF,
Jun 2002.

[11] P. Saint-Andre, J. Hildebrand, “reachability addresses”, XEP-0152,
XMPP standards foundation, 2014.

[12] X. Wu, H.Schulzrinne, “Programming end system services using SIP”,
IEEE international conference on communications (ICC), Anchorage,
Alaska, May 2003.

[13] J. Rosenberg, H. Schulzrinne, P. Kyzivat, “Caller preferences for SIP”,
RFC 3841, IETF, Aug 20014.

[14] M. Boussard et al., “Communication hyperlinks: call me my way”, 13th
international conference on intelligence in next generation networks,
(ICIN), 2009, Bordeaux, France.

[15] S. Shanmugalingam, N. Crespi, P. Labrogere, “My own communication
service provider”, International congress on ultra modern
telecommunications and control systems and workshop, 2010, Moscow.

[16] C.Davids et al., "SIP APIs for voice and video communications on the
web", International conference on principles, systems and applications
of IP telecommunications (IPTcomm), Wheaton, IL, Aug 2011.

[17] K. Singh and V. Krishnaswamy, “Building communicating web
applications leveraging endpoints and cloud resource service”, IEEE
International Conference on Cloud Computing, Santa Clara, CA, Jun-Jul
2013.

[18] K. Singh and J. Yoakum, “Vclick: endpoint driven enterprise
WebRTC”, (to appear in) IEEE International Symposium on Multimedia
(IEEE ISM), Miami, FL, Dec 2015.

[19] G. Billock, J. Hawkins, P. Kinlan, “Web Intents”, W3C draft, 2013,
http://www.w3.org/TR/web-intents/.

[20] Run Chrome Apps on mobile using Apache Cordova,
https://developer.chrome.com/apps/chrome_apps_on_mobile, accessed
Jul 2015.

