
ALICE: Avaya Labs Innovations Cloud Engagement
John Buford

Avaya Labs Research
Basking Ridge, NJ, USA

buford@avaya.com

Kundan Singh
Avaya Labs Research
Santa Clara, CA, USA

singh173@avaya.com

Venkatesh Krishnaswamy
Avaya Labs Research

Basking Ridge, NJ, USA

venky@avaya.com

ABSTRACT

We present the architecture and implementation of our enterprise

cloud portal named ALICE, Avaya Labs Innovations Cloud

Engagement, which provides self-service access to service

developers, tenants, and users to various communication and

collaboration applications. Currently ALICE is used for field

testing of advanced research prototype services based on

technologies such as WebRTC and HTML5. This paper describes

the current portal and extensions to support multi-tenancy.

We describe challenges in creating a self-service multi-tenant

SaaS (software-as-a-service) portal to host communications and

collaboration applications for small to medium scale businesses.

The challenges faced and the techniques used in our architecture

relate to security, provisioning, management, complexity, cost

savings and multi-tenancy, and are applicable and useful to other

cloud deployments of diverse enterprise applications.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and

Organization Interfaces – web-based interaction, computer-

supported cooperative work, collaborative computing; D.2.11

[Software Engineering]: Software Architectures – domain-

specific architectures.

General Terms

Design, Experimentation, Management, Security

Keywords

Cloud, system architecture, portal, multi-tenancy, Internet

telephony, enterprise communications, web collaboration.

1. INTRODUCTION
Avaya Labs Innovations Cloud Engagement (ALICE) is a self-

service multi-tenant cloud portal which hosts software trials and

product releases for communication and collaboration applications

for mobile users in small/medium businesses. The self-service

portal enables a developer – an internal research team, product

group or an external partner – to create and host a service (or

application) in ALICE; a customer such as a small business to

sign-up to create a new tenant account; and the employees of that

business to use one or more approved services. The architecture

provides the building blocks for service provisioning, resource

isolation, user management and monitoring. It has infrastructure

components for communications and collaboration services.

As a portal, ALICE relies on cloud services provided by cloud

platforms such as Amazon Web Services, HP Cloud or IBM

Cloud Computing. The design of ALICE answers the following

questions:

- How can self-service cloud deployment of apps be provided

securely?

- What infrastructure is needed on top of existing cloud

platforms to support existing and anticipated

communication and collaboration services?

- How can the portal enable multi-tenancy and its economies?

- How can provisioning be done so that the scalability is

achieved while complexity is avoided?

ALICE aims to host a range of communication, collaboration and

analytics services. It contains cloud applications (or SaaS) for

both synchronous and asynchronous interactions and sharing but

largely focuses on web and mobile-based clients. The diverse

applications include both thin-client vs. rich endpoint driven apps,

and exhibit many cross application interactions with in-house as

well as third-party systems. The scope of this paper is the core

architecture of ALICE focusing on multi-tenancy and self-service.

The current services running in ALICE include: (1) a team

collaboration system for persistent sharing of content with

escalation to real-time voice, video or application sharing [5][6],

(2) an enterprise-grade multimedia messaging service [2], (3) a

web-based video call and conferencing service that runs all the

application logic in the browser [19], (4) a mobile and desktop

application to quickly reach one’s frequently used contacts, (5) a

meeting helper agent which joins the conference bridge during a

meeting, automatically creates the meeting summary at the end,

and sends it to the participants, and (6) a contact center help desk

tool for agents to remotely interact with the customer’s browsing

session in real-time. Additionally, infrastructure components

supporting these services are available for new service developers.

ALICE is positioned within the emerging SaaS (Software as a

Service) cloud model. Traditionally, enterprise software is

installed within the secure network perimeter of an organization.

The SaaS cloud model allows renting such enterprise applications

that run in the cloud data centers [9]. Several cloud migration

strategies are seen in enterprises: from switching users to a third-

party cloud-hosted application (e.g., Google Mail), to creating a

parallel cloud-ready application (e.g., Microsoft 365office), to

making an existing in-house application cloud-ready (e.g., Avaya

IP office).

For vendors, a single migration strategy is often not enough as the

underlying architecture often requires interactions with diverse on

premise or third-party SaaS systems. This particularly applies to

communication and collaboration applications which use

infrastructure such as border and PSTN gateways, media servers,

relays, transcoders, speech engines, and trunking. For example, a

business may want to use cloud-hosted web collaboration and its

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
IPTComm’15, October 6-8, 2015, Chicago, IL, USA.

Copyright 2015 ACM 978-1-4503-3949-0 …$15.00.

Copyright © ACM, 2015. This is the author's copy of a paper that appears in IPTComm’15. See permission on bottom. Please cite as follows:

J. Buford, K. Singh and V. Krishnaswamy, "ALICE: Avaya Labs Innovations Cloud Engagement", In Proceedings of Principles, Systems and

Applications of IP Telecommunications (IPTComm’15), Chicago, IL, Oct 2015.

doi:10.1109/MCOM.2013.6495760

in-house VoIP PBX (private branch exchange), and still want both

the web and phone users to participate in a conference.

Consequently, we believe that the domain of communication

services varies in important ways from existing enterprise SaaS

offerings. These differences include connection driven workloads

which impact resource management and more complex

provisioning. ALICE appears to be the first SaaS portal focusing

on this class of services while targeting self-service and multi-

tenancy.

We present the system architecture of the multi-tenant portal in

Section 2, and the operations to enable multi-tenant self-service in

Section 3. Section 4 describes our current implementation and the

initial set of hosted applications. Section 5 contains application

challenges and requirements based on our software development

and operations experience. We list related work in Section 6, and

present our conclusions and future work in Section 7.

2. MULTI-TENANT PORTAL
Software multi-tenancy refers to a software architecture in which

a server running a single instance of a service serves multiple

tenants. A tenant is a group of users which shares a security

profile with respect to access to the software instance. Each tenant

is isolated from all other tenants’ data, configuration, user

management, resource usage, and tenant-specific individual

functionality and properties. Multi-tenancy contrasts with multi-

instance architectures, where separate software instances operate

on behalf of different tenants [12].

While multi-tenancy increases application complexity, significant

resource efficiencies can result. A multi-instance deployment

using virtualization means that a complete virtual image including

OS and associated services is deployed per tenant. A multi-tenant

service would share the OS and services across multiple tenants.

Multi-tenancy impacts ALICE regarding tenant life-cycle, service

provisioning, resource isolation, user management, and service

branding. Tenant specific configuration, data, resource usage, and

user profiles are the province of the service itself. ALICE should

support service-specific provisioning mechanisms to enable a new

tenant. Each tenant should be able to manage and monitor its

suite of ALICE services through a tenant specific user interface.

Multi-tenancy means that different service types and deployments

can be simultaneously supported while enabling each tenant to

isolate its data and user experience, as if the service were

deployed on premise or a private cloud.

This and next sections describe the roles of service developers,

portal operator, tenant administrators and end users.

2.1 Service Characteristics
The types of services to be supported are internet collaboration,

communications, and analytics, and supporting infrastructure

components such as application gateways and transcoders. Such

services are conventionally implemented using application servers

and the resource load is connection driven as opposed to data

driven. The presumed hardware infrastructure is assumed to be

that found in commercial and private cloud data centers.

We assume that the services are independent, which eliminates

provisioning of service combinations and integrated service

management requirements.

This architecture is designed for services which scale towards

small/medium business workloads. For more complex

provisioning and service management, the service definition

provider can provide a per tenant API and web interface.

2.2 New Tenant User Experience
The portal is intended to operate self-service for users, tenant

administrators, and service developers. First a tenant

administrator registers at the portal. If no tenant is associated with

the domain for that user’s email address, then the user is routed to

the tenant registration page in which tenant info, billing

procedures, and licensing is completed. The tenant administrator

determines the user workload for each service, and can also

moderate user requests to join the tenant group and/or specific

services.

A new user self-registers and their email domain is used to

determine which tenant group they belong to. The user completes

a basic user profile which is available for each service which the

user may use. User authentication credentials are created which

are used during access to any particular service.

A tenant wants to enable a new service which is listed in the

tenant’s available service list. The tenant determines the expected

user load, geographic placement requirements, and user access

constraints. Launching the service causes the ALICE service

provisioning interface to be invoked. A new tenant is added to the

service, and the expected user load and geographic preferences are

used by the service provisioning agent to create the tenant context

and add resources according to the expected user load. Per tenant

service monitoring is enabled and billing is enabled.

A user selects the service link at the portal to access the service.

The link includes the embedded tenant-id and user-id. The service

authenticates the user by querying the ALICE user directory

(LDAP) server for the combination tenant-id, user-id, and security

credentials. Successful query results in access to the service.

Within the service, the user’s access rights are determined by

service specific settings set by the tenant administrator.

Figure 1. Building blocks of self-service multi-tenant architecture
Tenant

(1) register

(a) Service provisioning
Tenant

P
er

 s
er

v
ic

e
cl

o
u

d

re
so

u
rc

e
u

se

(b) Service monitoring

Virtual Private Cloud

Tenant
Lifecycle

Portal

(2) request service

Service
Registration

Billing

Service
Instance

Service
Provisioning

(4
)

in
st

an
ti

at
e Service

Provisioning
Agent

Service
Monitor

Service
Machine
Instance

Service
Developer

Virtual Private Cloud

Billing

Tenant
Billing &

Monitoring

Service
Monitoring

Portal

Service
Instance

Service
Developer

Service
Provisioning

Agent

Service
Monitor

Service
Machine
Instance

2.3 New Service Registration
The developer of a new service implements the required interfaces

described in the next section and registers the service as shown in

Fig.1(a) using the service registration REST API. Registration

makes the service available to tenants through the self-service

portal. A tenant with access to the service is then able to use

wizard style interface to launch a service which users within the

tenant group are able to access using the credentials provided by

the server. The developer provides one or more machine instances

which are to be instantiated when a service is launched. These are

stored in the portal service instance catalog and used by the

ALICE provisioning interface to launch cloud instances. The

developer separately instantiates a provisioning agent which

translates provisioning requests from the ALICE API described in

the next section to the internal configuration interface defined for

the service.

The developer can specify restrictions as to which tenants can use

the service. The developer separately establishes a billing profile

with the billing system. When the service is launched, the tenant

selects from the available billing profiles.

The developer can also specify whether the service developer

moderates service access requests, such as for early adopter or

trial versions of services.

The developer also specifies the base resource allocated per

tenant, and dynamic resource allocation rules by number of users.

Redundancy and geographic placement of services are determined

by the developer. The service developer determines the mapping

of incoming user load to needed resources to sustain the load. For

example, IP office service could indicate that one medium CPU

instance could support one thousand users. The service developer

also determines how the service architecture provides mutual

isolation of tenants’ data, configuration, security properties, and

resource usage. For example, VoIP service could indicate the use

of separate tenant database but a shared media relay server.

The service developer is able to monitor resource use for each

service. The mapping of resource usage per tenant is determined

by the service monitoring interface.

3. SELF-SERVICE OPERATIONS

3.1 Objectives
Multi-tenancy and self-service are at the core of this cloud

architecture. The primary objectives are (a) to enable service

developers to easily create and host cloud-ready services, and (b)

to allow small businesses to easily try out these applications

independent of other customers. Unlike existing cloud

infrastructure or platforms that bill either service developers or

end users, our goal is to price for paying business customers, i.e.,

tenants.

The architecture focusses on tight security, loose coupling, and

separation of customer signup from service access.

1. Tight security: the service must ensure security at different

layers – transport, data storage, media path.

2. Loose coupling: inter-service dependencies should be

replaceable, e.g., to another third-party or in-house.

3. Separate portal for customer signup: an example of loose

coupling is that a service should allow external user signups,

e.g., from the portal website.

One of our core objectives is to support bring-your-own-app

model, where an existing enterprise application is readily

converted to cloud-ready for customer trials, instead of having to

re-design the application to fit a particular cloud platform (or

PaaS). Without this the experimental cost of application migration

for the cloud trial is risky.

To simplify the architecture and encourage quick deployments of

services, we make certain assumptions, e.g., keep the services

independent of each other, instead of fine-grained-resource-usage-

pricing use higher level attributes such as number of users in a

tenant group, and delegate several cloud software responsibilities

to the service (or SaaS) developers.

A service developer decides how to implement the necessary APIs

described earlier, e.g., use true multi-tenant data store or start

multiple instances. Although the portal is designed to be multi-

tenant, the individual services may not be. Although the portal is

hosted on public cloud, an individual service may be on premise.

The following sub-sections describe the interfaces to implement

self-service of the multi-tenant model described in the previous

section. The tenant uses a web interface to invoke tenant

operations.

3.2 Tenant Life Cycle
A new tenant uses the tenant life cycle to register with the portal.

This includes selecting services and configuring billing,

administration, security and tenant information.

The service selection includes an optional overall non-disclosure

agreement (NDA), per service license agreement, deployment

options (compute and network resources, geographic,

reliability/redundancy settings, and maximum number of users by

region.

The tenant billing system is external to the ALICE portal (Fig.1).

At a minimum it supports the necessary business processes to

establish a new tenant billing account, confirm licensing and

NDAs are in place, issue billing statements, and collect per tenant

service usage from the service monitoring API.

The tenant creates and maintains the tenant security profile

including user management (add/delete/modify); service resource

management (add/delete/modify); change tenant information; add

and remove services from the service list. Basic tenant

information maintained at the portal and controlled by the tenant

administrator includes tenant name, domain name, administrator,

and branding assets. Branding assets are used by service user

interfaces to customize the user experience for that tenant.

The tenant can terminate services and its overall account,

including close billing account, delete all user accounts; backup

data and configuration; release provisioned instances and

resources.

class Tenant:

 create(tenantInfo,billingInfo,securityProfile)

 delete()

 modify(properties)

 get():properties

3.3 Service Provisioning
ALICE service provisioning interface invokes the service

provisioning agent provided by the service developer, passing the

tenant information and expected user load. This agent determines

the mapping of the user load to the needed resources.

Developers of new services map their service provisioning

interface to the following API. The details of how the service

creates a multi-tenant instance are isolated from ALICE.

class ServiceInstance:

 createForTenant(tenantId)

 start()

 stop()

 pause()

 destroy()

 configure()

 getServiceSpecificController()

3.4 Resource Isolation
Isolation of tenant specific data, configuration, and function are

controlled by the service. Resource usage by one tenant should

not impact service availability of other tenants. The service

developer is expected to ensure data isolation at the storage level

by managing separate encryption of tenant databases, and in

memory by keeping stateful tenant objects in separate address

spaces.

3.5 User Management
User management at the portal level is common profile

information across all service instances to avoid duplication of

common information. Each service should avoid duplicating

collection of this common information.

class User:

 addToTenant(userInfo, tenantId)

 removeFromTenant(tenantId)

3.6 Monitoring
The tenant, service developer, and portal operator have

simultaneous need for monitoring as follows. The portal operator

monitors cloud infrastructure usage versus per tenant billing per

service as shown in Fig.1(b). The service developer monitors

service usage to ensure that resource usage is within the threshold

to maintain resource isolation between tenants. The tenant sees

usage at the number of users.

The portal operator manages the cloud infrastructure to insure that

resource availability is within the agreed upon levels for each

service; the service developer determines the redundancy,

location, and capacity to provide the per tenant level of service.

4. IMPLEMENTATION

We describe the current implementation containing several real

cloud services which have been operating for more than a year.

Fig.2 shows the block diagram of the current servers hosted on

Amazon cloud (EC2). These are accessed by client applications

running in the browser or mobile devices. The portal is available

at [1].

Some servers such as for user authentication or VoIP are run

inside a virtual private cloud (VPC) and are not directly accessible

from outside. Other user facing servers such as the portal website

or team spaces are protected behind firewall policies. The system

can also utilize third-party cloud services such as for data storage,

messaging or media path establishment.

4.1 Enterprise applications

4.1.1 Initial services
Our initial trial has the following user facing services:

1. Connected spaces: This is team collaboration software for

persistent sharing of content with escalation to real-time

voice, video or application sharing [5][6].

2. Multimedia messaging: Unified communication and

messaging experience delivered via HTML5 technologies,

with support for user contacts, directories, messaging,

photos and search [2].

3. Vclick click-to-call: A pure web-based multi-party video

call and conferencing service that runs all the application

logic in the browser and integrates with existing corporate

directory using a browser extension [19].

4. Strata mobile app: A mobile and desktop application to

quickly reach one’s frequently used contacts, while

automatically selecting the right device or third-party

application that the target user is reachable on.

5. Customer-agent co-browsing: A demonstration of contact

center help desk type scenario where a customer interaction

can incrementally be escalated to text or voice/video chat

with the agent.

6. Meeting helper app: This application joins the conference

bridge during a meeting, automatically creates the meeting

summary at the end, and sends it to the participants.

This is not a complete list of all potential cloud services but is a

good sampler of commonly seen communication scenarios.

4.1.2 Role of portal vs. applications
In the current implementation, a new customer signs up on the

ALICE portal website (Fig.3) to request access to one or more

services. The administrator approves and provisions the services

for this signup. Once the user receives an approval email, she can

reach one of the approved services from her portal page. The

separation of tenant and user management from other services

allows us to add or remove services while keeping the list of users

intact.

The existing services in ALICE have significant overlap in the

technologies and supported use cases. For instance, WebRTC-

based communication is part of each of these services. The

overlap is intentional because these services are intended to be

independent, and solve problems from different perspectives in

Figure 3. Screenshot of ALICE portal signup page

SIP
Trunk

LDAP
proxy

zscalar
3rd party

clients

Figure 2. Current implementation contains several cloud

services accessible from web or mobile.

Author

ization LDAP
Web

Proxy
IP

Office

STUN/

TURN

WebRTC

Portal
Team

Spaces
Mess
aging

Client

Apps

Data

Store

V
P

C

STUN/

TURN

Storage
(Drive)

Mess
aging

Internet

public
servers

Amazon EC2

unified communications and contact center scenarios. Such partly

overlapping services are also often seen in the real-world.

Services in our sample set have their own separate databases

(mysql, postgresql, sqlite, Cassandra), own separate webservers

(Apache httpd, Tomcat, JBoss, or a light-weight Python-based

pub/sub server), and are written in many programming languages

(Java, PHP, Python, JavaScript). Such diversity represents real-

world of communication applications, and is intentional because

we do not want to re-implement existing applications to fit a

particular cloud platform.

In some cases, we also have cross-service integration. For

example, a user on multimedia messaging can attach a message

thread to a team space, or people viewing the same document in a

team space can initiate an impromptu video conference using

Vclick. Wherever possible we repeat the connected service’s

instance, to keep each service bundle independent of other.

4.1.3 Multi-tenancy vs. multi-instances
Some of our applications such as Vclick and Strata are endpoint-

driven that run all the application logic in the browser or mobile

endpoint. They use a simple WebSocket based resource server for

data access and asynchronous events [18]. This resource server is

multi-tenant enabled and has a namespace (or tenant-id) attribute to

separate the data and interactions among tenants. For example, a

Strata user in the first-bank-trial namespace sees a different

application branding than the one in the global namespace, and

cannot interact with the users in the global namespace.

The team spaces service implements multi-tenancy by using a

separate database per tenant. Tenant parameters encoded in the

service URL are used to select the database for the given tenant.

Some other services such as multimedia messaging currently use

multiple instances to support separate tenants. A front-end reverse

proxy can map the URL path or parameter containing the tenant

identification to the backend instance. To support self-service

multi-tenancy APIs presented earlier, these services may be

modified, e.g., to accept a tenant-id and map to a separate database

or table per tenant.

4.2 Authentication and user identity
The portal website enables user signup and provisioning. The

requirements for user identity and authentication are different for

different applications. For example, team spaces and multimedia
messaging use unique email as user identity, but Vclick and Strata

allow multiple signups from the same email address. Instead, they

authenticate using a unique opaque token associated with user’s

email. Multiple tokens per user enable provisioning different

devices of a user with different capabilities.

The portal website uses LDAP to create user signups, and a

MySQL database to store list of approved apps. Beyond that

individual service implements its own authentication using either

LDAP or a proxy to map user-id to opaque auth-token.

It is tempting to add more features to the portal such as for user

profile and picture, which could be reused by other services.

However, not all services have the same set of social profile

requirements. It is also tempting to create a single-sign-on (SSO)

that could be used by any service. However, that will break the

diversity requirement, forcing all services to adhere to a specific

way of doing things. For example, a service may want to link a

user to her enterprise identity bypassing this SSO. Keeping the

authentication in each service gives more flexibility to the

developer on how to implement it.

4.3 Multi-Tenant Provisioning
The ALICE service provisioning and monitoring is intended to be

independent of the underlying cloud platform. For example,

Table 1 shows a top level mapping of the service registration,

provisioning, and monitoring for ALICE to AWS [4] and

OpenStack [16]. An authorized developer is given credentials to

perform operations on its cloud services that are hosted in ALICE.

Table 1 Cloud platform operations

ALICE AWS EC2 and
CloudWatch API

OpenStack

Service
register

ImportImage
RegisterInstance

CreateImage
RegisterImage

Service
provisioning

StartInstances
RunInstances
StopInstances

Create Server
Resize Server
Start Server
Stop Server

Monitor
service

MonitorInstance
ListMetrics

CPUUtilization
NetworkIn/Out

Show Resource Info
Create Meter
Show Meter
 Statistics

5. CHALLENGES AND REQUIREMENTS

This section lists some practical challenges faced and techniques

used in implementing and deploying individual services. At the

high level, there are four types of the challenges in enterprise

cloud software: (1) compliance/security, (2) cost or price, (3)

complexity, and (4) compatibility with existing IT systems.

5.1 Compliance and security
Enterprises often have strict compliance requirements, especially

for confidential data and real-time voice interactions. Multi-

national organizations also comply with inter-country data sharing

laws. Telecom regulations and requirements related to accounting,

auditing, call recording and data privacy further complicate

existing enterprise communication systems. A customer would

like to export and delete all its private data stored on ALICE when

the trial is discontinued or completed.

5.1.1 Private cloud
Amazon VPC (virtual private cloud) gives the necessary tools to

configure a secure and private data center in the cloud for our

system. In particular, security critical pieces such as user

authentication, media gateways and transcoders run in a VPC

isolated from the rest of the Internet. Additionally, encrypted

IPsec tunnels can be established between the VPC and the

customer’s data center when desired.

5.1.2 Transport security
Transport layer security (TLS) is used in all client-server and

server-to-server interactions for data exchange, signaling or

control. We require all web accesses over https, and block any

unsecured http access except for the front-page, which when

accessed on http is redirected to https.

Individual services such as team spaces and multimedia messaging

also require client certificate from the browser to restrict

unauthorized clients at the transport layer. When accessing these

services, the browser prompts the user to select an installed

certificate (or user profile) on both mobile and desktop. Per-tenant

or per-user certificate can provide fine grained access control.

Although many existing services can terminate TLS, it is not

always possible, e.g., if secure transport or client certificate is not

(or is incorrectly) implemented in the server, or a self-signed

instead of a PKI server certificate is used. In that case, we use

nginx or stunnel proxy to terminate TLS and reach the backend

insecure server in the VPC. Using a proxy shields the client-server

security requirements from the capabilities of the server.

5.1.3 Cross origin resource access (CORS)
Web browsers prevent cross-origin Ajax connections to avoid

leaking service APIs to unsolicited third-party websites. However,

such cross-origin access is sometimes required, e.g., when the

pub/sub event server runs on a different port than the application

server, or in cross-service interaction.

Our WebSocket pub/sub server allows only white-listed Origin.

Some others services do not allow CORS, or incorrectly return

Access-Control-Allow-Origin: * header, which does not work for Ajax.

In that case, we use nginx reverse proxy to terminate and approve

legitimate CORS using more_set_headers function.

Browser prompts the user for selecting client certificate or for

continuing on an invalid server certificate – only if the origin’s

webpage can be displayed, but not for cross-origin Ajax or

WebSocket, in which case it silently fails the request. One could

use nginx, e.g., by forwarding /pubsub to the external server, and

all the other /* to the local backend server. In team spaces, we use

a nested iframe in the first webpage that includes a blank page

from the second pub/sub server. Since the iframe is displayable,

the browser shows the prompt and succeeds the connection.

Browsers disallow loading insecure http content within an iframe of

a secure https webpage. Team spaces hosted on https may need to

show third-party http content in its document sharing tab, which is

overlaid with application code for annotations and interactions.

We use a data URL to encapsulate a subset of the application code

that loads the http content and enables annotations. This URL is

loaded in a new tab. The client-server application remains secure

on the network; only the new tab is insecure but not on the

network. Alternative approaches have problems, e.g., launching

the document in a new tab loses the application code, degrading

the service to http loses the session security and privacy, and using

a server-side proxy on https to serve third-party http requires

inefficient substitution of internal links via the proxy.

5.1.4 Access control
Our services typically do user-level access control using web style

username/password and cookies. HTML5 local storage is

preferred over cookies to store certain sensitive credentials.

The resource server uses an opaque authentication token (can be

many per user) that is transparently passed from the browser’s

local storage during connection establishment. It allows fine

grained resource authorization, e.g., Alice but not Bob can POST

to /users/alice@example.net/presence, and avoids same password

reuse that often causes accidental leak to another website.

5.1.5 Employee directory
Enterprises use internal directories, e.g., LDAP, which must

remain private and not moved to the cloud. We have created a

split-proxy architecture (Fig.4) that enables an authorized Internet

application to access intranet services such as LDAP or internal

web pages. The split-proxy terminates the server connection at A

from the co-located website acting as a client, securely tunnels the

connection request and subsequent data to its intranet component

B, which re-originates the connection and request in the enterprise

network. The response traverses back to the client. The split-

proxy is protocol independent, i.e., it does not parse LDAP.

5.1.6 Firewall filtering
Amazon EC2 firewall filters are used extensively to block any

unwanted ports, especially for VoIP, e.g., block inbound SIP from

the Internet.

Although using only public-key instead of password-based login

mitigates malicious ssh attempts, the crucial log files get filled

with garbage, which could potentially hide a real problem. We use

iptables filter to prevent immediate ssh attempts from the same IP

address, thus reducing the frequency of such attempts in the log.

5.1.7 Miscellaneous
Our services use WebRTC media paths encrypted using DTLS-

SRTP in browser-to-browser as well as client-server. We use

HTTPS/TLS for all signaling and control data. This ensures

secure media path as long as the browser and server are not

compromised.

We use CAPTCHA during signup at the portal website. It is also

recommended if frequent failed user input attempts from the same

source are detected on any web page.

5.2 Complexity
The complexity in enterprise cloud systems is multi-faceted. It is

risky to get locked to a single cloud platform, and complex to

move to a different one later. Many services can readily be scaled

horizontally, e.g., by adding more instances of the media relay or

partitioned databases. However, vertical scaling and performance

improvement in terms of CPU and memory utilization is harder.

Software development and deployment on the cloud often involve

extended troubleshooting, especially for communication systems

that must deal with NAT and firewall traversal, corporate web-

proxy or VPN interference, flaky Internet connection, or race

conditions due to signaling or media path latency. We show some

steps in reducing software development/deployment complexity.

5.2.1 Local development
Our endpoint driven applications are developed and tested on

local host using a command line Python-based web server. Since

all the application logic runs in the browser, this significantly

reduces the development time. Once tested, only one line is

changed to switch to the cloud pub/sub server.

We use multiple user profiles on locally running browsers to

emulate multiple user accounts.

Our communication and collaboration services allow multiple

registrations from the same user, and the ability to join the same

conference as multiple participants by the same user. This greatly

simplifies testing of collaboration applications from one machine.

In the past, some of our services such as team spaces and web
collaboration have been fully hosted on a single laptop for

demonstrations or exhibitions with limited access to Internet.

5.2.2 Corporate firewall and web proxy
Old style web proxies often interfere with modern WebSocket
connections, either during handshake preventing upgrade, or

Figure 3. Split-proxy to access intranet services on the cloud

Server

Internal

private

network

Client

e.g., team spaces website

p1

p2

External

public

network

e.g.,

LDAP

(1) (2) (4)
(3)

(B)

(A)

during long lived session by disconnecting TCP after a timeout.

The latter is solved by application-level keep-alive messages. The

former usually requires secure WebSocket over https to make the

handshake opaque to the proxy.

In some networks outbound ports are blocked except for https. We

use nginx reverse proxy on 443 to multiplex many services, e.g.,

path /cs/app goes to team spaces and /restserver to resource server.

Corporate firewalls usually block peer-to-peer media flows of

WebRTC. We use a cloud hosted media relay to facilitate media

paths across such restricted network edges. Some services such as

IP office force a client-server media path for all calls to enable

advanced media processing at the server.

5.2.3 NAT’ed servers
Amazon EC2 has popularized the concept of running servers

behind a NAT. This is not an issue for traditional web services.

However, some VoIP systems send IP addresses in the application

call setup messages, and these servers must be made aware of the

external IP addresses via configuration for use in any application

protocol. Alternatives such as STUN-like mechanism at the server

or address substitution at a proxy may not work in practice

because not all strings that resemble an IP address should be

substituted, substitution may not always be feasible due to obscure

binary format, such substitutions may break the message digest or

signature, or different IP addresses may be used in forward and

reverse web traffic due to reverse proxies.

5.3 IT compatibility
Enterprise software is often built and tested for specific platform,

and at times, even a specific OS version. Sometimes, such

software is installed as a complete bundle including the OS on the

target machine. Often times cloud innovations of resource sharing

cannot easily be applied when backward compatibility with such

configuration is required.

Enterprise software sometimes depends on crucial pieces of

external services that are readily available in the enterprise, but

not in the cloud, e.g., employee directory for accounts verification

or search, and exchange server for user’s calendar to join the next

meeting. Fig.3 shows one approach to solve this. More generally,

it is important for a tenant to preserve its own authentication

information in ALICE that it would use in its own domain.

5.4 Cost
Saving cost is usually one of the main objectives of migration to

cloud. However, SaaS cost saving requires careful optimization as

well as long term vision. Risks such as accidental configuration

error in auto-scaling, hidden cost of periodic or frequent required

upgrades, or double charging for bandwidth in the cloud as well as

enterprise’s broadband are crucial. For instance, a cloud provider

may force an upgrade to Java 7 which may require significant

effort in refactoring the application software written in Java 6.

In our case, the cost also includes the development and

deployment efforts for new services to make them cloud ready for

customer trials. Such hidden or intangible costs are hard to

measure or estimate.

The measurable operational cost includes the cloud’s monthly bill,

and annual cost for domain names and SSL certificates. Hosting

multiple server applications on the same EC2 instance, picking the

right instance for experimental projects, and stopping instances

when not in use are all useful in saving the monthly fee. The SSL

certificate cost can be reduced by running multiple servers on

different ports on the same IP address because the server

certificate bound to an IP address works for any port. The nginx

reverse proxy can also reduce the number of server certificates

needed, by terminating https accesses to all the services on one or

two front-end proxy machines.

5.5 Service developer guidelines
We list some guidelines for service developers that are desired but

not required to host the services on ALICE.

1. Decouple user identity and authentication from rest of the

business logic, so that user signup and in future user

authentication can be moved outside the service.

2. Loose coupling among multiple components within a

service, or with any external service, so that one can be

easily replaced or moved.

3. Avoid use of locally detected IP addresses in server’s

application protocol. Prefer to use configuration.

4. Use tenant-id in any data access or server APIs, so that it can

be easily made multi-tenant in the future. Ability to

dynamically attach a database server or select a database

based on this tenant-id on a per-request basis.

5. Do not assume specific transport or network layer security

or access control, as some of these can be moved to outside

the application server via a reverse proxy.

6. RELATED WORK

6.1 Self-Service SaaS
Microsoft Office 365 [13] is an example of SaaS group of

software plus services subscriptions that provides productivity

software and related services to its subscribers. Details of how

services are auto-provisioned or monitored on Microsoft cloud

infrastructure are not available.

Mietzner and Leymann [14] present a self-service portal for

deploying multi-tenant services. Services are described by

templates which contain an application model and a variability

model. The service vendor develops the application model and

uploads it to the portal with the solution components. The

customer uses the portal GUI to select app-specific variability

parameters; the details of this configuration step is specific to each

service.

ALICE differs in two ways: 1) it delegates the provisioning steps

to a provisioning agent that the developer would provide for their

service, 2) it collects common provisioning parameters, e.g., user

load, and delegates the resource assignment to service developer.

6.2 Cloud Platforms
Several cloud platform APIs are available, including AWS [4],

OpenStack [16], vCloud [20], and Cloud Foundry [7]. These

platforms are not intended for end-user self-service access to

services, but provide infrastructure to streamline the development,

deployment, and management of cloud services.

Amazon Web Services [4] (AWS) is a collection of remote

computing services which make up a cloud-computing platform.

Instances can be currently launched in 9 regions worldwide.

Developers can launch instances from their own machine images

or select from a large catalog of third party images. OpenStack

[16] is a free and open-source cloud-computing software platform.

Users deploy it as an infrastructure-as-a-service (IaaS). It can be

used to control pools of processing, storage, and networking

resources—which users manage through a web-based dashboard,

through command-line tools, or through a RESTful API. The

VMware vCloud API [20] provides support for developers who

are building interactive clients of VMware vCloud Director using

a RESTful application development style. Cloud Foundry [7] is an

open source cloud computing platform as a service (PaaS).

Applications deployed to Cloud Foundry access external

resources via services. External dependencies such as databases,

messaging or file systems are services. When an application is

pushed to Cloud Foundry, the services it uses are specified.

Unlike existing PaaS environments that require changing the

software application to fit the desired model, ALICE leaves it up

to the service developer, who may replicate the server instance on

a new machine (or VM) for the new tenant, attach a separate

database (or table) on-demand per request based on tenant-id,

partition the data in same database based on tenant-id, and/or

provide access control based on tenant-id.

6.3 SaaS Multi-Tenancy
Previous work in SaaS multi-tenancy includes platforms, database

impact, and design of specific services. Krebs et al. [12] provide

a succinct definition of multi-tenancy and the architecture issues

for designing multi-tenant services. Force.com [17] appears to be

the largest deployed multi-tenant SaaS platform. All application

data is treated as meta-data to the Force.com platform, which is a

Development as a Service (DaaS) paradigm.

Jacobs and Aulbach [10] describe design alternatives for multi-

tenant databases. They examine three approaches: database per

tenant, separate tables per tenant, and separate rows in each table

per tenant. Separate databases give the best isolation but have the

most overhead. Table sharing complicates isolation, query

optimization, and tenant data backup. Walraven et al [21] describe

a middleware technique for performance isolation in multi-tenant

SaaS architectures. The middleware handles scheduling and

monitoring according to SLA constraints.

7. CONCLUSIONS AND FUTURE WORK
The goal of ALICE is to accelerate and streamline the deployment

of communication and collaboration services hosted in the cloud

to both end users and small/medium businesses. Self-service and

multi-tenancy are key to achieving this. The design addresses

self-service for tenants, users, and service developers. The model

is practical because of availability of versatile cloud platforms and

assumptions of service independence and management that we

believe are realistic for the range and complexity of services

delivered to small and medium size businesses.

There are known limitations in dynamic resource management on

these platforms. For example, our experiments with Amazon EC2

show that horizontal scaling is feasible whereas automated

vertical scaling is not yet. For operating a scalable multi-tenant

service, the lack of vertical scaling is less than ideal but not

insurmountable. Other issues include how a tenant would

coordinate identity management used in ALICE with other SaaS

portals and with its own enterprise directory.

The design of a multi-tenant service currently requires service-

specific architecture. Application servers available today do not

include pre-defined support for tenant data and resource isolation.

The identification of generic multi-tenant building blocks for

communications and collaboration services is an open question.

Individual components used in multimedia communication and

Internet telephony may have different multi-tenancy requirements

than traditional data-oriented services, e.g., resource consumption,

isolation or privacy of a media relay is dealt differently than a data

storage service. Self-service multi-tenancy of such components is

for further study, especially in hybrid cloud architecture.

8. REFERENCES
[1] ALICE: Avaya Labs Innovations Cloud Engagement.

https://alice.avayalabs.com. Website. Retrieved Jul 2015.

[2] Avaya Multimedia Messaging.

http://www.avaya.com/usa/documents/avaya-multimedia-

messaging-uc7657.pdf. Ret. Jul 2015.

[3] Amazon Virtual Private Cloud (VPC). Website.

http://aws.amazon.com/vpc. Retrieved Jul 2015.

[4] Amazon Web Services API. http://docs.aws.amazon.com

/AWSEC2/latest/APIReference/Welcome.html. Jul 2015.

[5] Buford, J., Dhara, K., Krishnaswamy, V., Wu, X., Kolberg,

M. A Communications-Enabled Collaboration Platform:

Framework, Features, and Feature Interactions. Principles,

systems and applications of IP telecommunications,

IPTComm. New York, NY. 2010.

[6] Buford, J., Mahajan, K., Krishnaswamy, V. Federated

Enterprise and Cloud-based Collaboration Services. IEEE

Intl Conf on multimedia system architectures and

applications, IMSAA-11. Bangalore, India. 2011

[7] Cloud Foundry. http://cloudfoundry.org/. Ret. Jul 2015.

[8] Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A. Dynamic

Scaling of Web Applications in a Virtualized Cloud

Computing Environment. IEEE Intl Conf on e-Business

Engineering, ICEBE’09. pp.281-286, 2009

[9] Enterprise software vs software-as-a-service.

http://effectivedatabase.com/resources/the-difference-

between-enterprise-software-and-software-as-a-service/.

Retrieved Jul 2015.

[10] Jacobs, D., and Aulbach, S. Ruminations on Multi-Tenant

Databases. In BTW, vol. 103, pp. 514-521. 2007.

[11] Katzer, M., Crawford, D. Office 365 DirSync, ADFS, Single

Sign On and Exchange Federation. 2013.

[12] Krebs, R., Momm, C. and Kounev, S. Architectural Concerns

in Multi-tenant SaaS Applications. Proc. of the 2nd Intl Conf

on Cloud Computing and Services Science (CLOSER 2012).

426-431. Portugal, 2012.

[13] Microsoft Corp. Office 365. http://office.microsoft.com/.

Website. Retrieved Jul 2015.

[14] Mietzner, R., and Leymann, F. A self-service portal for

service-based applications. 2010 IEEE Intl Conf on Service-

Oriented Computing and Applications (SOCA), pp. 1-8.

[15] Nginx. http://nginx.com/. Retrieved Jul 2015.

[16] Open stack API. http://developer.openstack.org/api-ref.html.

Retrieved Jul 2015.

[17] Salesforce.com. Force.com: A Comprehensive Look at the

World’s Premier Cloud-Computing Platform. 2009.

http://www.developerforce.com/media/Forcedotcom_Whitep

aper/WP_Forcedotcom-InDepth_040709_WEB.pdf

[18] Singh, K., and Krishnaswamy, V. Building communicating

web applications leveraging endpoints and cloud resource

service. IEEE Intl Conf on cloud computing (IEEE Cloud).

Santa Clara, CA, USA. 2013.

[19] Singh, K., Yoakum, J. and Johnston, A. Enterprise WebRTC

powered by browser extensions. Principles, systems and

applications of IP telecommunications, IPTComm. Chicago,

IL. 2015.

[20] VMWare vCloud Air. http://vcloud.vmware.com. Jul 2015.

[21] Walraven, S., Monheim, T., Truyen, E. and Joosen, W.

Towards performance isolation in multi-tenant SaaS

applications. In Proc. of the 7th Workshop on Middleware

for Next Generation Internet Computing, p. 6. ACM. 2012

