
Taking on WebRTC in an Enterprise

Alan Johnston, John Yoakum and Kundan Singh

Avaya Inc

Email: {abjohnston,yoakum,singh173}@avaya.com

Abstract—WebRTC, Web Real-Time Communications, will have

a major impact on enterprise communications, as well as

consumer communications and their interactions with

enterprises. This article illustrates and discusses a number of

issues that are specific to WebRTC enterprise usage. Some of

these relate to security: firewall traversal, access control, and

peer-to-peer data flows. Others relate to compliance: recording,

logging, and enforcing enterprise policies. Additional enterprise

considerations relate to integration and interoperation with

existing communication infrastructure and session-centric

telephony systems.

Keywords-WebRTC; enterprise communication; firewall; media

relay; SIP

I. INTRODUCTION

WebRTC [1][2][3], the industry effort to add real-time
voice and video communication capabilities to browsers, is
receiving much attention and hype these days. As browser
vendors announce timelines for support and developers show
off demos, it is clear that these new standards, Application
Programming Interfaces (APIs), and protocols will have a
major impact on the World Wide Web. Less often discussed is
the impact on enterprises and comparisons to existing
enterprise communications.

Typically, enterprise communication systems enable two-
party phone calls or multiparty conference scenarios. The
equipment enabling these session-centric client-server
capabilities usually resides within the guarded enterprise
network – e.g., behind the enterprise firewall or within a
Virtual Private Network (VPN). In contrast, WebRTC opens up
several compelling opportunities that go beyond the classical
enterprise communication views of sessions and guarded
networks. For example, team members visiting the same
internal project webpage could auto-join a video conferencing
application embedded in that page. As another example,
customers visiting an enterprise website could initiate
interactive conversations with its customer service agents – via
voice or video – without asking the customers to call the
enterprise using a phone. The agents – using WebRTC
technology – participate in media flows from the browser
rather than conventional session-centric telephony gear,
making it easier for the agents to live outside the enterprise
communication system boundaries. Numerous other examples
related to collaboration or other enterprise value propositions
that benefit from WebRTC are likely [4]. Some of these web-
centric interactions will likely not have direct analogies in
existing communications systems, given the ease of building
rich user interfaces and experiences with HTML5.

Web developers working on consumer applications and
websites will likely be able to use WebRTC directly as initially
specified. Using fairly simple JavaScript code will result in
new multimedia communication capabilities being embedded
in their application or site in new and interesting ways.
However, there are some open issues relating to enterprise
adoption and use of WebRTC. This paper illustrates and
discusses a number of these issues. Some of these relate to
security: firewall traversal, access control, and peer-to-peer
data flows. Others relate to compliance: recording and logging.
Additional issues relate to integration and interoperation with
existing communication infrastructure and session-centric
telephony equipments.

Traditionally, the enterprise network enforces strict security
requirements resulting in very restrictive firewalls and network
border elements. On the other hand WebRTC strives to create
an end-to-end secure media path between the two browser
instances with little or no interference from any intermediate
entity. This fundamental design principle poses several
challenges to the traditional enterprise Information Technology
(IT) mindset. Existing Voice-over-IP (VoIP) tools and
techniques used by enterprises are not enough to deal with the
challenges. Although, we propose potential directions to solve
them, ultimately the industry will decide how it adapts this
emerging technology in enterprises.

II. ENTERPRISES AND FIREWALLS

Enterprises use firewalls to enforce Internet Protocol (IP)
access policies at the edge of their networks. These policies
relate to who is allowed to access which sites and resources.
Firewalls are often implemented using 5-tuple rules (source and
destination IP address, source and destination ports, and
transport protocol). Other firewalls utilize deep packet
inspection to determine the application using the transport
connection and its characteristics. Typically, firewall devices
include both filtering and address mapping techniques – the
latter is known as Network Address (and port) Translation
(NAT). Conventional firewalls were developed mainly to
handle client-server protocols such as web browsing, email,
and file transfer. A client-server packet sent from inside the
firewall to outside typically creates a pinhole at the firewall so
that the packets in the reverse 5-tuple flow are not blocked.
Peer-to-peer communication systems and protocols are a bigger
challenge to firewalls and other policy enforcement devices.

Real-time communication flows of Real-time Transport
Protocol (RTP) [5] packets are typically described as peer-to-
peer flows. That is, they are often established directly between
the two communicating devices. Servers are often used to help
establish these flows, but routing the resulting media session

Copyright © IEEE, 2013. This is the author's copy of a paper that appears in IEEE Communications Magazine. Please cite as follows:

A.Johnston, J.Yoakum and K.Singh, "Taking on WebRTC in an enterprise", IEEE Communications Magazine, Vol. 51, No.4, April 2013,

doi:10.1109/MCOM.2013.6495760

through these servers is often undesirable for a number of
reasons:

1. Real-time media flows are extremely sensitive to
latency or delay. Peer-to-peer flows typically result in
the lowest possible latency.

2. Direct peer-to-peer media flows often have fewer IP
hops than relayed traffic, which results in a lower
chance of packet loss.

3. Servers used for signaling are often not distributed
geographically nor have enough bandwidth to be used
successfully as media relays.

Peer-to-peer flows have been historically difficult to get
through enterprise firewalls. During the early days of Session
Initiation Protocol (SIP) [6] VoIP deployment and testing, this
was frequently encountered in the form of the “one way media
problem” where media could be sent out from inside the
firewall, but the reverse flow media was blocked. This occurred
in cases where the signaling was able to traverse the firewall,
due to its similarities to client-server protocols.

A number of approaches were developed to make firewall
traversal easier. They include:

1. Symmetric RTP [7]. A bi-directional media session is
actually two uni-directional RTP flows. In particular,
the user agent uses the same User Datagram Protocol
(UDP) port for sending and receiving the RTP stream.
Using symmetric RTP, it is possible to make these
two RTP flows seem more like a single bi-directional
flow which more easily traverses firewalls.

2. Interactive Connectivity Establishment (ICE) [8]
which formalizes the “hole-punching” approaches
developed by peer-to-peer gamers. This approach uses
test packets sent by both participants in a session to
establish filter rules in firewalls and also Network
Address Translation (NAT) devices.

For enterprise firewall traversal of communication, the
most used approach today involves a Session Border Controller
(SBC).

III. SESSION BORDER CONTROLLERS AND FIREWALL

TRAVERSAL

A Session Border Controller or SBC [9] is essentially an
application layer firewall with a signaling and media
application layer gateway (ALG) built in. The SBC is usually
connected in an enterprise Demilitarized Zone (DMZ) as a
trusted enterprise network element. It blocks all unauthorized
signaling and media flows, and provides a point of policy
enforcement as shown in Fig.1. Today’s SBCs support SIP and
RTP, including Secure RTP (SRTP). SIP is a signaling protocol
used for VoIP and video communication to establish RTP (or
SRTP) media sessions. By parsing SIP messages, the SBC is
able to discover the transport addresses (5-tuple) to be used for
the media session. If the SIP traffic is authenticated and
authorized, the SBC either opens a pinhole (filter rule
permitting the RTP traffic) or activates an RTP relay. In both
cases, the resulting RTP media session is able to traverse the
firewall.

In addition to firewall traversal, SBCs also provide a
number of other services, including protocol normalization,
media transcoding, and protection against malicious packets
and payloads – these features are not directly related to the
firewall traversal problem discussed here but highly useful in
enterprises.

Figure 1. The SBC intercepts SIP/SDP signaling on port 5060, applies

policies and opens firewall pinholes to allow RTP media path for enterprise

communication, but WebRTC traffic uses Hypertext Transfer Protocol Secure

(HTTPS) which is not intercepted and hence the media path is blocked.

Since enterprises have widely deployed SBCs for
communication firewall traversal, it would seem logical to re-
use them for WebRTC. However, there are a number of
problems in this approach. Firstly, it relies on using the
signaling channel to authenticate the media channel. With
WebRTC, there is no standard signaling channel. Secondly,
SBCs rely on inserting themselves into the control path to learn
when media flows are beginning and ending. With WebRTC,
the control path is the Hypertext Transfer Protocol (HTTP) or
WebSocket channel between the browser and web server and
will be running over Transport Layer Security (TLS) and hence
be encrypted and not available to observe as shown in Fig.1.
Finally, SBCs use an identity determined from the signaling
channel to authenticate the media channel. In WebRTC, there
is no standard way to indicate identity. The few identity
mechanisms that have been discussed in standards bodies are
related to the identity in the media path, and this identity is of a
different nature than what SBCs are accustomed to dealing
with.

In addition, WebRTC has no concept of “sessions” –
instead, it has a concept of “streams.” Streams have media
sources and sinks that generate and consume media flows.
They are created and manipulated using JavaScript, resulting in
Peer Connections being established. Streams can be created for
media to flow point-to-point or between a browser and a media
server or mixer. There is no direct correspondence between
Peer Connections and participants in a multi-party session.
Once a Peer Connection has been established between a
browser and a media selector, additional participants can be
added at any time. For example, media from multiple
participants can be mixed or offered by the media mixer or
selector.

DMZ

Enterprise

boundary

SBC SIP

phone
SIP

system

Public

Internet
Enterprise

network

Web

browser

in

ne
o

ut

SIP and SDP SIP and SDP

RTP or SRTP RTP or SRTP

Web

server

HTTP or HTTPS HTTP or HTTPS

Web

browser

SRTP and ICE

(WebRTC)

SRTP and ICE

(WebRTC)

One possible approach would be for an enterprise to
attempt to convert every WebRTC session that crosses
enterprise boundaries into a communication session that its
existing infrastructure could handle in a session-centric
manner. This could, for example, mean converting a WebRTC
session into a SIP session, applying policy and authentication,
then converting back again to provide to the other browser
(Fig.2). This type of man-in-the-middle approach is not
practical, especially since WebRTC capabilities can be
embedded in many types of web applications and sites, and
many of them follow a very different paradigm of real-time
communication applications and services. In particular, a one-
to-one translation from a WebRTC stream to a SIP session is
not trivial without breaking existing SIP implementations. In
addition, all control and media in WebRTC are encrypted.

Figure 2. Converting a WebRTC media flow into a SIP/SRTP to allow

policy enforcement by a SBC is possible for a simple call or conference but

does not work in many web-centric scenarios where a one-to-one translation

between a WebRTC media flow and SIP session is not trivial.

These problems do not mean that WebRTC will never cross
enterprise firewalls, but rather that new approaches must be
used. Some of these approaches will likely be novel, and
discovered through actual deployment and rollout of WebRTC.
However, there are some indications of directions this may take
in today’s standards and approaches. The rest of this paper
presents ideas to answer three important questions: How can
the enterprise firewall adapt to WebRTC? How can the
enterprise detect and apply policy to WebRTC flows? And,
how can the emerging WebRTC applications integrate and
interoperate with existing enterprise communication
equipment?

IV. WEBRTC FIREWALL TRAVERSAL

From the previous discussion, it is clear that WebRTC
firewall traversal must work without a standardized signaling
protocol, without a conventional signaling identity, and without
a concept of sessions that can be managed or controlled. This
might seem like a daunting task, but there are some potential
options.

It should be clear that the term Session Border Controller is
not applicable for the element which assists WebRTC in
traversing enterprise firewalls. While the border part may be
accurate, the session part is not applicable, and any notion of
controlling WebRTC streams without access to a signaling
channel is also not realistic. In the following discussion, we
will refer to the network element enabling enterprise edge
traversal as a Secure Edge, just so we can have a label.

There are a number of ways in which this Secure Edge
might be designed.

A. Detect ICE exchange

For one, there is a type of standard signaling protocol used
for establishing media flows defined as part of WebRTC. It is
built into the Interactive Connectivity Establishment (ICE)
protocol used for hole-punching. Before any media data flows,
ICE will be run between the two browsers. The Secure Edge
could detect when an ICE exchange is starting up across the
enterprise border. This could be used to distinguish a WebRTC
media flow from a random packet flow across the border,
allowing policy to be applied.

In addition, there is a username/password fragment in ICE
Session Traversal Utilities for NAT (STUN) messages.
Normally, this information is randomly generated. If this
information were generated in a particular way, or coordinated
with an enterprise authentication system, the Secure Edge
could authenticate the ICE exchange and hence the resulting
media flow. One proposal for how to do this is described in
[10]. In WebRTC, ICE is run by the browser. While the
JavaScript has access to the username/password fragment,
there is currently no standard way in the JavaScript to set this
media flow identity. It is possible a browser plug-in, utilized by
the enterprise, could be used to set this identity.

B. SRTP key negotiation

Another approach might be to use the SRTP key
negotiation along with Datagram Transport Layer Security
(DTLS) to authenticate the media flow. For example, if DTLS-
SRTP is used for key management, the Secure Edge could act
as a man-in-the-middle and hence validate the public key in the
fingerprint. If the enterprise deployed a Public Key
Infrastructure (PKI), then the certificate could be checked and
validated. A self-signed certificate could also be uploaded from
the browser and stored in an enterprise key server. This could
allow the Secure Edge to authenticate the browser inside the
enterprise and apply appropriate policy. However, if some form
of end-to-end identity is used in WebRTC, then this man-in-
the-middle approach would look like an attack and would be
detected and the user alerted.

If the media is being relayed by a man-in-the-middle, then
this also provides a place where recording could take place.
Note, however, that the context of the media flow would not be
available. That is, the identity of the remote party in the media
flow or the application or website which enabled this media
flow would not be known from this insight alone.

C. Media relay

Another approach would require a media relay to be used
for WebRTC media sessions crossing the enterprise boundary.
There are standards for this media relay, known as a Traversal
Using Relays around NAT (TURN) [11]. ICE hole-punching
begins with each browser gathering candidate addresses:
addresses that might be useful in routing incoming media
packets to the browser. Typically, this includes private IP
addresses determined by reading the Network Interface Card
(NIC) or equivalent on the user device, and public IP addresses
determined by a STUN response packet from a STUN server.
In addition, a TURN candidate address can also be provided to

SBC

Web

browser

SRTP

Web

server

HTTP or

HTTPS

Web

browser

SRTP and ICE

(WebRTC)

SRTP and ICE

(WebRTC)

SRTP

Web

server

SIP

SDP
SIP

SDP

HTTP or

HTTPS

be used as a last resort (i.e. the lowest relative priority of all the
candidates).

The enterprise firewall would be configured to block non-
relayed WebRTC media flows. The enterprise would deploy a
TURN server in the DMZ, and permit media flows which go
through this server as shown in Fig.3. The enterprise would
issue individual credentials to use the TURN server. A user
would enter their TURN credentials into the browser, which
would then use them to gain a TURN candidate address.
During media flow setup, the TURN server could authenticate
the user and also learn what type of media flow is to be setup
based on the bandwidth requested. Some policy could then be
applied to this media flow.

Figure 3. Flows using a media relay in the DMZ to establish a media path

with WebRTC.

Note, however, that the exact context of the media flow is
inherently unknown. This approach also relies upon the
browser being able to be configured with the user’s TURN
credentials. In some ways, this is similar to the configuration of
a web proxy, used by some enterprises to monitor and control
web browsing.

The TURN server is also an ideal place to perform
recording, according to an enterprise policy. Again, without the
cooperation of the website, no media flow context could be
determined. Also, since the media is encrypted end-to-end, the
browser or the web application would need to share the
encryption key in order for the media to be played back.

D. Firewall conscious applications

The previous approaches deal with WebRTC transparently
to the application. Another path of evolution might be that the
enterprise web applications consciously work in conjunction
with the Secure Edge. This is similar to how some gaming
applications use Universal Plug and Play (uPnP) to configure
firewall holes. The Secure Edge might have a web interface,
which is used by the enterprise application developer to
explicitly authenticate the end user and request permission
from the Secure Edge. Thus, the recording is handled by the

application developer in the browser, and later uploaded to the
Secure Edge or other enterprise-specific storage, instead of
transparently recording the conversation at the border device.
The application developer might also deliver all the control
messages of JavaScript to the Secure Edge device so that it can
authenticate, install session context and open pinholes as
shown in Fig.4. Such a device would block all WebRTC traffic
unless the application has explicitly used its API to install a
media flow context.

Figure 4. A firewall conscious web application voluntarily delivers the

media flow context to the Secure Edge which opens the firewall pinholes.

The main advantage of this approach is that the application
developer voluntarily delivers the media flow context to the
Secure Edge. This approach would require standardization of a
Secure Edge API.

V. POLICY COMPLIANCE

Enterprises often require policy compliance such as
recording and logging of all conversations. Some require
selective authorization of certain call destinations or websites
based on who is involved in the interactions. In particular,
records of past emails, memos, instant messaging, calls, and
even logs of visited websites are useful during auditing and
sometimes in legal proceedings. The usefulness of such insight
often requires enterprises to co-relate records with the person
who sent or received a piece of information or placed or
received a call.

Various examples of where policy could be applied have
been mentioned in the examples above. For all of the
approaches described in the previous section except the last
one, there is no known way for the Secure Edge to know the
full context of a media flow to apply policy. For example, even
knowing which web site or application is originating the flow is
difficult, as the user may have multiple open tabs and browsers
running, and any of the sites could be WebRTC enabled. If per-
site WebRTC blocking is desired, the entire site might need to
be blocked using, for example, the enterprise proxy.

A. Transparent at border

From the previous discussion, it is clear that due to the end-
to-end encryption and security of a WebRTC media path,
transparently recording media conversations at the Secure Edge
is not feasible without acting as a man-in-the-middle.

Web app

and

browser

Secure

Edge
browser

Web

server

Session offer over HTTPS

ICE address gathering

Session answer over HTTPS

Enterprise Public Internet

Create session S with new offer

Open ports

Update S with answer

Media flows

browser Media

relay
browser Web

server
User configures

relay and

credentials

DMZ

Session offer with P over HTTPS

TURN allocate

TURN response (port P)

Open

port P

Session answer with Q over HTTPS
Create

port Q

Enterprise Public Internet

ICE connectivity check to P

ICE connectivity check to Q

Relayed connectivity check

Connectivity check response Relayed connectivity check response

Unfortunately, this could prompt the end user with security
warnings and cause annoyance.

B. Mangle web JavaScript

A web proxy could intercept and filter out any WebRTC-
related JavaScript code, or enforce use of a media recording
API. This would likely interfere with proper operation of the
website, and could perhaps render the entire site unusable or
unpredictable in behavior. Secondly, this approach is either too
difficult or impossible to implement in practice, as it involves
detecting related code in obfuscated or dynamically generated
JavaScript, and intercepting web pages delivered over TLS.

VI. INTEGRATION AND INTEROPERATION

WebRTC deviates from traditional enterprise
communication in two ways – it opens up communications
from every web application instead of controlled software
pieces installed by the IT department, and it bypasses the
existing enterprise communication infrastructure typically
enabled in its modern form by the SIP family of standards. The
integration and interoperation of WebRTC with legacy SIP
devices could happen in the end-user's browser (client) or via a
translation gateway (server).

A. Interoperation

To connect with a SIP device from the browser, one could
implement the SIP stack in JavaScript running in the client, use
SIP-over-WebSocket transport, and use an end-to-end media
path enabled by WebRTC. However, WebRTC includes
several new profiles and extensions in the media path that are
typically not implemented in existing SIP devices, e.g.,
multiplexing RTP and Real-time Transport Control Protocol
(RTCP), audio and video streams on the same UDP port,
mandatory ICE negotiation attributes, mandatory SRTP, and
the proposed mandatory audio and video codecs. Interoperating
with existing SIP devices that do not support some or all of
these features requires an intermediate gateway that has access
to the signaling as well as media paths. Alternatively, the SIP
devices need to be "upgraded" to support all the new features.

Upgrading existing SIP phones, both hardware devices and
softphones, is not trivial. There are several potential paths this
could evolve into. For example, existing SIP phones could be
reprogrammed to be able to participate in WebRTC media
flows, remain unchanged but interoperate with WebRTC via a
gateway, or be superseded by a new generation of phones that
employ various web-centric enablements such as HTML5 and
WebRTC. The benefit and cost analysis for such transitions is
an open issue for many enterprises and device vendors that are
considering WebRTC adoption. Besides the technical
differences listed above, there is a crucial behavior difference
in the way a SIP phone or a WebRTC enabled application is
expected to work. In particular, people primarily expect a
phone to make or receive calls, which is a single primary
application. However, people expect to use WebRTC to enable
real-time communications inside whatever they are already
doing or want to do on the web. It remains to be seen how the
industry shapes the future of existing SIP devices while
adopting WebRTC.

Translating between SIP/RTP and WebRTC at a gateway
appears to be a viable short term solution for enterprises and
device vendors alike. Moreover, such a gateway server can
work with the proposed Secure Edge to integrate authentication
and firewall traversal between the two protocols. Due to
differences in offer-answer state machines, it is not trivial to
blindly forward session description between SIP and WebRTC
endpoints. Nevertheless, the gateway can terminate and
originate media flows on each side to perform translation as
necessary similar in spirit to a back-to-back user agent.

B. Integration

Integration of WebRTC enabled applications in an
enterprise is a broader issue – of which interoperation with
existing communication system is only one part. The larger
perspective deals with how WebRTC will change the way
enterprise does business – either within the organization or
outside with customers or other organizations. The emerging
trend to bring your own device to work has opened the
enterprise network to some extent, and such devices may not be
subject the same set of strict policy enforcement. As the trend
of moving everything to the cloud continues, WebRTC can
bring the communication primitives to these cloud hosted web
applications, e.g., problem tracking and resolution systems,
information repositories, customer relations tools, corporate
directories, social media interactions, blogs, and so on.
Initially, enterprises will likely take measures to primarily
interoperate between existing communications systems and
WebRTC-centric applications, while keeping core
communications functionality in SIP. Eventually, a few
powerful web-centric enterprise applications will likely emerge
that have the potential to move WebRTC technology to a more
central position in enterprises.

WebRTC not only brings voice and video flows to web
applications but also allows sharing generic data interactively.
For example, a browser could expose the user's desktop as a
local media stream so that any web application can enable
desktop sharing. These applications diminish the differences
between a communication specific device and a generic web
and computing device. Such interactive data sharing brings
new threats in relation to enterprises.

C. Peer-to-peer data flows and file transfers

WebRTC also includes enablers for interactively
exchanging data and files in conjunction with real-time media
flows. This capability is highly attractive to gaming
applications and possibly many web applications. Such
transfers will likely be perceived by enterprises as introducing
significant threats. In contrast to media flows that are processed
by codec technology that has defined expectations and can
ignore or discard unexpected content, data flows can be
unstructured and used in many ways. In general, threats related
to media flows involve exploiting some flaw in the media
processing technology. In contrast, interactive data flows can
more easily contain viruses or other malware since they are not
processed in a specific way.

Requests for media flows are polite in that they always ask
the user for permission to use a resource like the microphone or
camera in a flow. The current WebRTC specifications do not
ask or alert the users in any way that a data flow is going to

happen. This characteristic alone likely makes such data flows
as part of WebRTC interactions appear as more of a threat in an
enterprise context than the media flow itself for both network
protection as well as intellectual property reasons. Beyond
network threat vectors, enterprises have concerns about what
intellectual property leaves or enters the enterprise.
Undetectable leakage of valuable intellectual property owned
by an enterprise is an easy to understand consideration. Less
obvious but also important are possible allegations or claims
that may arise over intellectual property owned by someone
else that enters an enterprise, especially if the entry is not well
documented.

It is likely interactive data flows will have to be detected
and subjected to enterprise policy, possibly in a different
manner than interactive media flows. At least initially, until it
is clear exactly how to handle interactive data flows across
enterprise network boundaries, some enterprises may want to
simply restrict WebRTC to media flows only. At this point in
the maturity of WebRTC, detailed discussion of this topic is
beyond the scope of this introductory article.

VII. CONCLUSION AND FUTURE WORK

This paper has begun to look at enterprise requirements for
permitting WebRTC media flows to cross enterprise
boundaries. The existing state-of-the-art Session Border
Controllers will not work with WebRTC, and many of their
principles do not really apply to WebRTC. A number of
potential partial solution approaches have been outlined and
discussed. The analysis in this paper shows that while there are
some promising potential approaches, the design of a Secure
Edge to permit enterprise authorization and application of
policy to WebRTC traffic is far from solved today.

In the future, if an enterprise treats web-based rich media
interactions differently than existing VoIP, it may not apply the
same set of strict policies to WebRTC. In such cases, web site
level filtering may be enough. On the other hand, the IT

department may treat it as a threat to enterprise security and
compliance. Ultimately, the benefits and desirability of
WebRTC interactions across the enterprise boundary will result
in solutions to this problem.

We are currently investigating various ideas in the
application of enterprise policy in a WebRTC context in ways
that are significantly different from how policy is applied in
session-centric communications technologies. Publication of
the concepts related to our current enterprise policy research is
presently under consideration, placing discussion of that
research beyond the scope of this article.

REFERENCES

[1] A.B. Johnston and D.C. Burnett, WebRTC: APIs and RTCWEB
Protocols of the HTML5 Real-Time Web, Digital Codex, 2012, ISBN
978-0985978808

[2] WebRTC 1.0: Real-Time Communication Between Browsers, W3C
Working Draft, Aug 2012, http://www.w3.org/TR/webrtc/

[3] Real-Time Communication in WEB-browsers (RTCWEB) IETF
working group, http://tools.ietf.org/wg/rtcweb

[4] A.Lepofsky, "Social Business 2013: Less Talking, More Doing",
Constellation Research blog, Dec 2012,
http://www.constellationrg.com/blog

[5] H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time
Applications,” RFC 3550, 2003

[6] J. Rosenberg et al, “SIP: Session Initiation Protocol,” RFC 3261, 2002

[7] D.Wing, "Symmetric RTP / RTP Control Protocol (RTCP)," RFC 4961,
2007

[8] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator Traversal for Offer/Answer Protocols,”
RFC 5245, 2010

[9] J. Hautakorpi et al, “Requirements from Session Initiation Protocol (SIP)
Session Border Control (SBC) Deployments,” RFC 5853, 2010

[10] T.Reddy et al., "STUN Extensions for Authenticated Firewall
Traversal", IETF, work in progress, draft-reddy-rtcweb-stun-auth-fw-
traversal

[11] R. Mahy et al, “Traversal using Relays around NAT (TURN): Relay
Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766,
2010

