
Building Communicating Web Applications

Leveraging Endpoints and Cloud Resource Service

Kundan Singh

IP Communications Department

Avaya Labs

Santa Clara, USA

singh173@avaya.com

Venkatesh Krishnaswamy

IP Communications Department

Avaya Labs

Basking Ridge, USA

venky@avaya.com

Abstract—We describe a resource-based architecture to quickly

and easily build communicating web applications. Resources are

structured and hierarchical data stored in the server but accessed

by the endpoint via the application logic running in the browser.

The architecture enables deployments that are fully cloud based,

fully on-premise or hybrid of the two. Unlike a single web

application controlling the user's social data, this model allows

any application to access the authenticated user's resources

promoting application mash-ups. For example, user contacts are

created by one application but used by another based on the

permission from the user instead of the first application.

We present aRtisy, a platform to further simplify web application

development by using pre-built communication widgets for

common use cases such as phone call, conferencing, call

distribution and video publish or play. The architecture extends

beyond web to native applications and reduces the barrier

between web and non-web applications for communication. Our

resource access protocol acts as a generic signaling mechanism

for the emerging WebRTC (Web Real-Time Communications).

We have implemented several applications completely in HTML5

running in the browser using this resource-based architecture.

Keywords- Web communication; end-to-end; HTML5; VoIP;

WebRTC; WebSocket; RESTful

I. INTRODUCTION

A common trend in existing web applications such as photo
sharing, social connections, blogs or document sharing is to
manage and control the user's data. Although the data belongs
to the user, it can be accessed only via one website in many
cases. This trend causes several problems:

Redundancy: A user who creates her profile on many websites
causes redundancy and fragmentation of data that is hard to
manage and keep up-to-date. It would be nice if the user can
change her data such as the current location or work place at
one place to update her social presence everywhere.

Application lock-in: Websites control what applications may be
used for accessing the user's stored data. For example, a user
must use the web communicator provided by the website that
stores her contacts data, even though she prefers a similar
application by another website.

Rigid data boundary: Enterprises often block social websites
because the websites do not restrict their data to enterprise-only
contacts or interactions, though the software that powers the
website can potentially work on the restricted private database.

Tied lifetime of data: The lifetime of the user data is tied to that
of the website which tends to become obsolete. For example,
the social connections data on MySpace or Friendster could not
be reused when the users decided to migrate to Facebook.

Tying the user data to one application significantly limits
the use of that data in today's web applications that often
include cross site interactions [1]. A user could log in with her
Facebook account on a third-party blog or chat with her
Linked-In contacts on a web-based instant messenger. Such
scenarios are possible if an application can access the user data
controlled by another website. Some websites have APIs
(Application Programming Interface) [2] to allow other sites to
access some data. This is a workaround rather than directly
solving the problem by separating the user's data from the
application logic that accesses it.

Figure 1. Traditional application model vs resource-based model

A traditional web model runs the application logic on the
server side while using the browser as merely a front end
device (Fig.1a). A Rich Internet Application (RIA) runs its
application logic in the browser using a plugin or native
HTML5. A resource-based application model has a data-centric
RIA and a resource service (Fig.1b). Our web resource server
(or resource service) exposes a generic protocol and API to
access the data independent of any specific application. The
resource service and the web application code can be separately
managed, e.g., a user who visits the public social website from
an enterprise network sees only the private connections and
interactions stored on the enterprise resource service, or a user
stores her profile and contacts on a cloud resource service but
gives permission to other e-commerce or social sites to access
them. We apply the resource model to build communicating
web applications involving audio, video, text and presence.

We have built a developer platform called aRtisy to easily
create such applications. Building communicating applications
is hard. Although, the emerging WebRTC (Web Real-Time
Communications) [3][4] brings real-time multimedia to the
browser, developers still need to handle signaling, security,

Browser Application

logic
Web

server

HTTP,

websocket

CGI, PHP,

servlet DB

Browser Application

logic

Web

resource

server

HTTP,

websocket

JavaScript

DB

(a) Traditional web application model

(b) Resource-based application model

Copyright © IEEE, 2013. This is the author's copy of a paper that appears in IEEE Cloud. Please cite as follows:

K.Singh and V.Krishnaswamy, "Building Communicating Web Applications Leveraging Endpoints and Cloud Resource Service", IEEE

International Conference on Cloud Computing (IEEE Cloud), Santa Clara, CA, USA, Jun-Jul 2013.

robustness, scalability and interoperability with legacy telecom
equipments. Moreover, to help developers think in terms of
simple application concepts rather than complex protocols, we
identify common use cases as communication widgets. Each
widget contains one application scenario, e.g., a phone call,
multiparty conference, call distribution, or video publish or
play. The platform allows interconnecting the widgets for quick
application prototyping. The resource service also forms a
generic signaling framework for WebRTC applications because
a proprietary signaling is not suitable for cross site interactions.

We present related work and a background on the resource
service in Sections III and II, respectively. Section IV describes
our developer platform and communication widgets. We
present RIAs such as video chat, instant messenger and video
presence in Section V. Section VI describes cloud and on-
premise deployment challenges, e.g., security, access control
and interoperability with existing communication systems.
Finally, our conclusions and future work are in Section VII.

II. RELATED WORK

The resource-based application model builds on a very old
software engineering practice of separating the application data
from the logic, e.g., MVC and MVP (model-view-controller or
presenter) design patterns [5][6]. It moves this concept from a
software application to the end user – the user stores her data
on one system and uses the business logic and web interface on
another. Recent proliferation of social web applications has
amplified the need for such architectures [1][7]. Some websites
let others access its data [2][8] but are limited due to its pair-
wise application-centric sharing. We need a user-centric way to
store and subscribe to the structured data as shown in Fig.2(c).
We show the application in the browser in this paper, even
though it can potentially run server side on another web server.

Figure 2. (a) A single application controls the user data, (b) An application

allows another to access its data, (c) The user controls her data/approves apps

The concepts of distributed file systems can be applied to
web applications [9][10][11]. Cloud storage such as drop-box,
Amazon S3 and Google Drive can store files via web APIs.
Web browsers can synchronize local application data with
storage servers [12][13][14]. Some community projects address
the social data's privatization problem [15][16][17]. Menagerie
[18] allows sharing user's data across web applications using
hierarchical naming. BStore [19] has a global web-accessible
storage where the user controls which applications get access to
her data. Any of these recent cloud storage systems can be
modified to work in the resource architecture.

The push-based protocols used in publish/subscribe systems
[20][21][22] can be modified to dispatch resource change
events to the web application. The remote SharedObject in
Flash Player [12] lets a programmer see synchronized data
across browsers. Several large scale systems use data-centric

middleware [23][24] for loose coupling among applications for
scalability and robustness. Hookflash [25], a cloud framework,
brings structured data to web and mobile applications using a
peer-to-peer protocol. The choice of a particular protocol is not
important as long as it supports data access and change events
in the data-oriented programming model [26].

Our system needs simple primitives such as hierarchical
access-controlled data, and the ability to store an object or
array resource as persistent or transient data. The latter concept
is particularly unique in our implementation and helps in
creating robust communication applications without worrying
about explicit cleanup of the transient resources when the
browser terminates. We need a combination of user and
application level access control so that resources can be owned
by the user or the application, or both.

Communication widgets have been used in websites for a
long time. Many instant messengers have widgets to enable
multimedia communication from the browser such as Google
Chat. Legacy telecommunication services are widgetized [27]
to control the external phones or servers from web. Many
conferencing and cloud telephony providers are embracing
WebRTC [3] by creating APIs to embed their communication
widgets in third-party customer websites. Unlike these that
interface with external communication or application logic, we
create resource-based widgets that include the application
logic. Our video-io widget for WebRTC is inspired by an earlier
work [28] that uses a Flash-based video-box application for
many communication scenarios. Researchers [29] have created
resource APIs for web conference signaling that can use such
widgets. Interworking with the legacy communication systems
is done in the resource service transparently to the application.

The novelty of our work is in (1) showing several non-
trivial communicating applications entirely in HTML5 using
the resource model and (2) identifying the widgets covering
common use cases that can be interlinked to create a complete
application. The resource service can be hosted in the cloud or
on-premise, independent of the web application code.

III. BACKGROUND: RESOURCE SERVICE

A resource-based API was proposed in [29] for a web
conference application. Here, we extend the work to generalize
and apply it to many more applications. This section describes
the resource service and the resource access protocol we use.

Resources are hierarchical data identified by relative paths
on the server or absolute URLs with the server location. For
example, /room/1234 is a chat room's resource. A structured
resource is represented in JSON (JavaScript Object Notation),
e.g., {"status": "busy", "message": "in a call"} is a user's presence
status. A resource service provides generic resource access
using HTTP verbs such as GET, PUT, POST and DELETE, while
leaving the resource semantics to the client application logic.

The web application in the browser connects to the resource
service over a persistent WebSocket connection [30]. It serves
two roles: a channel to send asynchronous events from the
server to the client, and a context to scope transient resource.
The resource access protocol over WebSocket uses JSON
message format with applicable attributes such as request
method, resource path, data type of the resource, response

App

Data

User
(a) (b)

Data

App

User

App

(c)

Data

App

User

Data is stored in a

resource server

App runs in the

browser,

or another web

application server

code, event type, reason for failure and the actual entity (see
Fig.3). The msg_id field is used to co-relate the response with
the request. A persistent connection loses certain benefits such
as caching of a pure stateless RESTful (Representation State
Transfer) system, but may be compensated in the protocol, e.g.,
by using the if-modified-since attribute in the GET request.

Figure 3. Example of data access and event notification on a resource tree

Table I summarizes the methods. PUT creates or overwrites
a resource. POST creates a child resource under a parent's path.
It fails if the request has child identifier and that child resource
path exists. This is useful to avoid accidental overwrite, e.g.,
for new user signup with the same identifier. An application
typically uses a resource path to identify a structured object or
an array, but not both, e.g., /room/1234 is a structured object but
/room is an array containing an ordered list of child identifiers
including 1234. POST is also used to append a child to an array
resource where the child identifier is irrelevant so that the
resource service can create a unique identifier. GET returns the
object resource with its attributes or the child identifiers of the
array resource. To support pagination and search on arrays GET
/users?like=alice% returns matching child identifiers starting
with alice and /my/messages?offset=20&limit=10 returns third page
of messages. We support attribute reference in GET and PUT,
e.g., PUT /room/1234[video] modifies only the video attribute.
DELETE is used to delete a resource or a resource sub-tree.

To support asynchronous events, e.g., another participant
joins the room or an incoming instant message is received, we
have SUBSCRIBE, UNSUBSCRIBE and NOTIFY, e.g., subscribe to
/room/1234 and get notified when this resource or any of its
immediate children changes. The client-initiated NOTIFY gets
delivered end-to-end to all the subscribers of that resource.

TABLE I. METHODS IN THE RESOURCE ACCESS PROTOCOL

Method Purpose

POST

Create a child resource if it does not exist.

Append a child item under a parent array.

PUT
Create or update an object resource or its attribute.

Modify a resource from persistent to transient or vice-versa.

GET Read an object, an array or an attribute of an object resource.

DELETE
Delete an object resource or a resource sub-tree.

Automatically for all transient resources on disconnection.

SUBSCR

IBE

Subscribe to receive change notification of a resource or its

immediate children.

UNSUBS

CRIBE

Remove a previous subscription at the server.

Automatically for all subscriptions on disconnection.

NOTIFY
(server to client) Indicates data change per subscription.

(client to server to client) End-to-end message passing.

Each resource is created as either transient or persistent. A
transient resource is automatically deleted by the server when
the client connection that created the resource is disconnected.
This enables automatic cleanup and robustness against browser
crashes. When Alice closes her browser, her participant
resource at /room/1234/members/alice is automatically removed,
and all the other subscribers of members are notified.

A web developer sees a resource as a data object or array
that are accessed (create-read-update-delete) or subscribed, to
receive data change events, similar to the bindable objects and
properties in ActionScript. For instance, a list display can bind
to an array resource path, /room/1234/members, and update the
list items based on the received data events on this resource.

IV. COMMUNICATION WIDGETS

Identifying communication widgets helps reuse of common
communication scenarios across applications and lets the
developer think in terms of simple use cases rather than
complex protocols and messages. Fig.4 shows an example
application development in progress in our developer platform,
aRtisy. It shows the interconnected widgets on the left and the
editable visual layout of the application on the right.

Figure 4. Screenshot of aRtisy application builder showing interconnected

widgets for a video phone application with shared white-board.

A. Widget Properties and Interconnections

A web communication widget is a collection of HTML,
JavaScript and CSS (cascading style sheets) code to implement
an application scenario. It is used as a standalone application or
interconnected with other widgets or code to create a complete
application. A widget has properties, methods and allowed
interconnections to control or indicate its behavior, e.g., the
conference widget is controlled by a resource path and a joining
user name, and may interconnect with click-to-join. An instance
in a running application is called a widget item. Two widgets
interconnect via inclusion, attachment or property attachment.

Inclusion: Suppose A and B are widgets and A' and B' are their
widget items respectively. When A includes B, then A' contains
a reference to B'. If the application does not assign this
reference then a new B' is automatically created and assigned
when A' is constructed during application initialization. Thus, B
is required for A to work, and will be created if needed. Most
widgets include a connector to connect to the resource service.

Web

resource

server

Browser

(Alice)

websocket

{"method": "GET", "msg_id": 5,

 "resource": "/room/1234"}

room

1234 5372

alice bob

members

…

{"code": "success", "msg_id": 5, …

 "entity": {"video": true, "name": …}}

{"method": "POST", "msg_id": 6,

 "resource":"/room/1234/members",

 "id":"alice", "entity": {…}}

{"code": "success", "msg_id": 6,

 "id":"alice", … }

Browser

(Bob) SUBSCRIBE not shown

websocket

{"method": NOTIFY",

 "resource":"/room/1234/members",

 "notify": "POST", "create":"alice",

 "entity": {…}, … }

Attachment: When A attaches to B, then A' can work without B',
but if assigned, can delegate some behavior to B'. For instance,
a text-chat can work as a standalone text-only chat application.
It attaches to a conference or phone to facilitate text chat in a
multiparty conference or two-party phone call.

Property attachment: In an application, an item's property may
be set as constant, assigned from URL or set via a text input by
the user. When a property of A is attached to B, then B' is a user
input control to set or display that property of A'.

Table II lists the aRtisy widgets and the relative software
complexity, not including the third-party libraries for JSON,
MD5 and Base64. Our Python-based resource server has less
than thousand lines of code and uses [31] and PostgreSQL.
Typically, a widget that can have user interface is included in
an iframe and referenced by its iframe Window. Headless widgets
are included as scripts and referenced as instantiated JavaScript
objects. We define setProperty and getProperty methods in each
widget to control its properties, and dispatch a propertyChange
event to indicate any change to the parent.

B. Connector to Resource Service

The connector widget is used to connect to the resource
service for various data access and event notifications (Section
II), and is included by almost all other widgets. An application
can set its url property to a separate resource service.

TABLE II. CURRENT LIST OF COMMUNICATION WIDGETS. THE APPROX

SOURCE LINES OF CODE COMPARES RELATIVE SOFTWARE COMPLEXITY.

Widget Purpose LoC

connector

Connect to the resource service for data access and

events. Most others include a connector.

400

video-io,

audio-io

A video box to publish or play a media stream. The

two widgets share most of the code.

1250

phone Headless call signaling/call state for two-party call. 400

conference
Headless control and membership management for

multiparty conference.

350

click-to-

call

A button to initiate, answer or terminate a call, and

includes a phone and two audio-io widgets.

450

click-to-

join

A button to join or leave a conference, and includes

a conference widget.

200

roster
A roster display of participants or contact list, and

attaches to conference.

650

videos
A video conference layout which inclues zero or

more video-io, one per participant.

700

conversati

on

A multimedia chat box includes conference, roster,

videos, text-chat; also has file-sharing, emoticons.

350

text-chat
A text chat application that includes text-feed and

can attach to conference or phone.

300

text-feed
A list display of a dynamic array resource of text

messages or comments.

350

text-input
A user input control to set or indicate a widget's

property via property attachment.

150

inviter
Extends phone and includes conference – enables

inviting a target user to a conference.

400

call-queue
Extends phone but puts incoming call to a pending

calls list to answer by the end user.

400

distributor
Extends phone to do automatic call distribution to

one or more targets in parallel or sequence.

350

dialpad
A touch-tone keypad interface that attaches to

click-to-call or click-to-join.

150

notepad
A shared notepad with real-time updates of text,

and attaches to a phone or conference.

500

white-

board

A shared white-board with real-time updates of

drawings, attaches to a phone or conference.

300

A widget hides the implementation details or application
requirements while exposing easy to understand properties and
interconnections. For example, only audio-io and video-io deal
with WebRTC. If the user's browser does not have WebRTC,
the application should fall-back to alternative technologies such
Flash Player [12]. Thus, fall-back changes are localized to only
these two widgets while preserving all the applications that
used them. Similarly, only the connector widget deals with
WebSocket [30], and if the browser lacks its support, can be
changed to use another channel such as [32][33].

C. Widgetizing Audio and Video for WebRTC

The emerging WebRTC standards define protocol and APIs
to bring real-time communication to the browser [3][4]. It
allows an application to create a Peer Connection between two
browsers using ICE (Interactive Connectivity Establishment)
[34] to exchange real-time media streams such as live audio
and video. The signaling path involves negotiation of session
parameters (offer-answer) and ICE candidates, but is left to the
application. In these early days of WebRTC, a website tends to
create its own signaling path limiting cross-site mash-ups.

In the Flash-platform, a developer can easily build many
communication scenarios such as two-party calls, multiparty
conference, live broadcasts or panel discussions by setting a
couple of properties on a simple video box [28]. Similarly, our
video-io widget for WebRTC has a video box to either publish
the locally captured camera and microphone or play a remote
stream or a media file from the web, while hiding the signaling
negotiations. Its publish or play property is set to the resource
path identifying a real-time stream to publish or play,
respectively. The src property allows playing stored media file
similar to an HTML5 video element [35]. It defines other
properties to enable or disable the audio or video input or
output. The servers property is an array of ICE server locations.

This widget creates a peer connection from a publisher to
the players on the same resource path. When its publish
property is set to /path/to/stream1, it prompts the user for device
access in the browser. Once approved, the widget becomes a
publisher, creates /path/to/stream1/publisher and listens for any
change on /path/to/stream1/players. When another widget's play
property is set to the same path, it adds an array item under
/path/to/stream1/players and becomes a player. The resource
service informs the publisher about the new player. The
publisher initiates a new Peer Connection [3] to the player. The
signaling message containing WebRTC negotiation is sent
using NOTIFY on a resource. The player sends its message to
the publisher's resource path, and vice-versa. The message flow
of Fig.5 shows one publisher and two players.

We modify the publisher to subscribe to the player's
resource path to receive NOTIFY so that all the messages related
to one peer connection are exchanged on a single resource path
preventing accidental interference. A sender attribute separates
publisher-to-player messages from player-to-publisher. When the
player detects a change in the publisher resource, it resets its
previous peer connection and waits for new negotiations. When
the application clears the publish or play property or the user
closes the browser terminating the connection, the transient
resources for the publisher or player are removed, informing
the other party, which resets its side of the widget.

Figure 5. An example message flow with video-io widgets for publish and

play using WebRTC. For brevity, the irrelavant messages and JSON format

are not shown and the resource path of /path/to/stream1 is replaced by {root}.

Our resource design allows the publisher and players to
arrive in any order and enables the publisher to stream to any
number of players. The widget hides the application messages
while exposing the simple concepts of video publish and play.
Many widgets can be launched as standalone web applications
because their properties are settable via URL parameters, e.g.,
visit /sdk/video-io.html?publish=/path/to/stream1 to start publisher.

The audio-io widget is similar to video-io except that it deals
with only audio, and may not need a display. The three widgets
namely, connector, video-io and audio-io, are sufficient to build
many application scenarios. For example, a four-party video
conference application has one publish and three play video-io
widgets all using the same resource path in one conference.

D. Telephony-centric Widgets

The telephony-centric widgets emulate existing telephony
use cases, e.g., phone is a headless widget for two-party calls. It
has two controlling properties, local and target subscriber's
resource paths, e.g., /path/to/alice. It sends signaling messages
such as invite, accept, reject, cancel and end using NOTIFY on the

target resource path. Additionally, the data message is used to
send application-specific external data such as text chat or
session negotiation between the two parties. It uses a unique
call identifier for all the messages in one call attempt. The
caller's resource path is included in the invite message, and a
reason text in the reject message. The phone's state machine is
shown in Fig.6, and an example message is {"type": "invite",
"invite-id": "5324", "from": "/path/to/caller"}

Figure 6. State machine implemented by the phone widget. The NOTIFY

messages are in quotes such as "invite", and the user actions/prompts without.

The click-to-call widget is a web audio phone with a button to
initiate or answer a call. It delegates the call control logic to the
included phone widget, and the WebRTC-based media
processing to the two included audio-io widgets, one for publish
and another for play, i.e, it binds the phone's resource property
to the publishing audio-io's publish property, and its target_
resource property to the playing audio-io's play property.

A web developer may modify the widgets to change the
web phone's behavior. For example, interconnecting the audio-
io references to video-io widgets makes it a video phone while
using the same call control. The phone reference be set to
another telephony widget such as a call-queue or automatic call
distributor. The call-queue widget extends phone to put a received
call invitation in a list displayed to the user, and lets the user
select a call to answer or decline. The distributor widget extends
phone to allow multiple target resources. When a call is placed,
an invite is sent to all the target resources either in parallel or
sequence based on its distribution property. These telephony
widgets are compatible with phone using the same messages
and can be used wherever the phone widget is applicable.

The conference widget represents a multiparty conference
bound to a resource path under which all its conference and
membership resources are created. When multiple widgets set
their resource property to the same path, they subscribe to the
same conference and listen for change in its members. If
resource is set to /path/to/conf1, then /path/to/conf1/members is an
array resource of its members. When the me property is set to
local user's data, the widget joins the conference on the user's
behalf and adds the data in the members array. These two
properties are sufficient to control the widget. Additionally, it
defines join_id and myid to control and indicate the local
member's child identifier, if needed.

The phone and conference widgets have the core telephony
concepts useful in many applications. The click-to-join widget
provides a button to join or leave a conference. The inviter
extends phone for use in a conference, i.e., a user invites
another one in the conference using the same protocol as phone.

E. Web-centric Widgets

The roster widget displays a list of users, their presence
statuses and custom messages based on an array resource path.

idle

invited

"invite"/

prompt
end/

"reject"
inviting

active

call/

"invite" end/

"cancel"
end/

"end"
end/

reject/ "cancel"/

call/

"accept""accept"/

"data"/

send/

"data"

Web

resource

server

video-io

(publisher)

websocket

PUT {root}/publisher

{root}=/path/to/stream1

publisher players

2142 9635

video-io

(player 1)

websocket

POST {root}/players

id: "2142"

SUBSCRIBE {root}/players/2142

Set play to {root}

Set publish to {root}

NOTIFY {root}/publisher

GET {root}/players

["2142"]

SUBSCRIBE {root}/publisher

SUBSCRIBE {root}/players

Create Peer Connection

NOTIFY {root}/players/2142 [offer] NOTIFY {root}/players/2142 [offer]

Create Peer Connection

NOTIFY {root}/publisher [answer]NOTIFY {root}/publisher [answer]

… more NOTIFY messages for ICE candidates …

End-to-end media path

video-io

(player 2) websocket

POST {root}/players

id: "9635"

SUBSCRIBE {root}/players/9635

Set play to {root}

NOTIFY {root}/players [create 9635]

Create Peer Connection

NOTIFY {root}/players/9635 [offer] NOTIFY {root}/players/9635 [offer]

Create Peer Connection

NOTIFY {root}/publisher [answer]NOTIFY {root}/publisher [answer]

End-to-end media path

It can show contact list in an instant messenger or display the
membership list when attached to a conference.

The videos widget supports video conferencing bound to a
resource path and includes video-io items, one per participant. If
attached, it enables video in an otherwise audio-only conference
or phone. It automatically shows tile or picture-in-picture layout
based on the participants' count. The application may override
the layout by supplying a static set of video-io widgets, e.g., in a
fixed four-party video conference with 2x2 layout.

The text-chat widget implements a multi-party text chat. It
includes a text-feed to show the messages in an array resource,
and a text input control to post a message to that resource. The
message object contains the sender information, the date/time
of creation, the message type and the actual message either in
plain text or HTML. The persistent property determines whether
the message resources are persistent or transient. The chat
history storage and access is implicit in the resource model.
The text-feed widget can display any list of messages such as
forum posts or comments on a page.

The text-chat widget also includes popular instant messenger
features such as emoticons, is-typing indication and file sharing
using the resource model. A user can drag a file from her
desktop to this widget to share it with other connected users.
The file content is encapsulated as a data URL in the chat
message resource, without an explicit file sharing protocol. The
is-typing message in NOTIFY is sent on the conference resource
to all the participants when a user starts or ends typing.

The conversation widget includes conference, text-chat, videos
and roster for a complete multimedia conversation. Similar to
conference, it defines the root resource path and myid to
subscribe and join a conference path. The user interface allows
initiating audio and video, or sending text messages in a
conversation. The call_type attribute in the resource object
indicates whether this conversation has audio, video or text-
only, to benefit a new participant. The resources may reuse the
centralized conference data model [36].

We have implemented other web centric widgets such as
shared notepad and white-board, e.g., using HTML5 SVG
(Scalable Vector Graphics), to enable rich interactions. These
widgets (videos, text-chat, notepad or white-board) may be linked
to a conference or phone, or a compatible extension. The
attachment determines whether the application logic uses the
conference member's or the phone subscriber's resource path.

The ability to interconnect smaller use cases to build an
application is a very powerful and flexible way to create
modular and extensible applications such as video blog, video
presence, online games with interactions, "go to a page to
meet", or "do something on the web together with your friend".

V. EXAMPLE APPLICATIONS

We describe some rich Internet applications we have built
using the resource model.

A. Public Chat Service

When a user visits the website, the client application joins
the public room's resource, i.e., /apps/public-chat/public. Each
room has two child array resources, userlist and chathistory, for

the current participants' list and chat messages. The application
subscribes to these resources to display the user roster and chat
history. It allows video conferencing using fixed 3x2 layout of
video-io widgets. Unlike existing symmetric video conferencing,
it allows asymmetric media paths – each user decides who she
wants to see and hear from. A user can send private message to
another user via a direct NOTIFY on the target user's resource
instead of a POST to chathistory. We disallow listing /apps/public-
chat, hence one can use a private room identity instead of public.

B. Instant Messenger and Communicator

The communicator application is in HTML5 and does not
use legacy SIP [37] or XMPP [20]. A user signup creates a user
resource, e.g., /users/venky@avaya.com. All the contacts and
profile data such as presence status are rooted under this. A
roster widget binds to the user's contacts. The conversation
widget does multimedia chat starting as two-party and
extending to multiparty when the user drags more contact items
to the conversation window. Each user has an inbox resource for
offline messages and missed call invites. Each conversation binds
to a message thread resource. Our design allows merging
conversations, e.g., when an incoming thread is received from a
person for which the user already has a conversation.

The user profile and conversation data are not controlled by
a single application. For example, another application shows a
presence icon bound to the target user's presence resource, and
can be embedded in other places such as corporate directory or
user's home page. Clicking the icon opens a conversation widget
which seamlessly interacts with the target user's communicator
because both applications share the same resource design.

C. Video Presence

The video presence web application shows a list of contacts
based on an array resource path managed by the owner. Each
item in the list is the live video feed from that contact. The
owner can click on a contact's video to initiate a voice (and
text) call. Our web application uses video-io in the list item, and
conference, inviter, text-chat and one or more audio-io in a call.

We want to keep the capture frame rate very small for video
presence, but bump it up during the call. Due to lack of such
controls in the existing WebRTC APIs, we created a desktop
application using Adobe Integrated Runtime (AIR) and the
same resource paths, but with Flash-based media [28] instead
of WebRTC. It provides certain benefits for this use case –
lower bandwidth when not in a call due to frame-rate control,
and lower upstream bandwidth in a call due to client-server
media path instead of full-mesh of WebRTC. The resource
model extends beyond web to native applications and gives
seamless interoperability between the two.

D. Personal Wall

This is an enterprise social network where a person visits
someone's wall to post messages, or share calendar events,
business cards or files. All the shared data are resources with
appropriate permissions. The wall owner can enable her camera
or upload a media file using video-io for her video presence to a
visitor. We will incorporate contextual sharing of enterprise
data [38], e.g., when Alice visits Bob's wall, she could see the
last few conversations and shared files they have had outside
the application, e.g., via email or phone calls.

These applications are fairly small with less than a thousand
to a few thousand lines of code, but demonstrate a wide variety
of application use cases built in the resource model. We use
Google Chrome on desktop that contains HTML5 support of
WebSocket and WebRTC. Our widgets also work on Ericsson's
Bowser (iOS) that does not support WebRTC APIs in iframes,
and requires non-trivial hacks to move them to the top-Window.

WebRTC is still evolving, particularly in media recording
and peer-to-peer data channel. We deliberately left out
examples of widgets and applications based on these features.
We expect them to play crucial role in our future work.

VI. CHALLENGES: CLOUD AND ON-PREMISE

We show challenges and potential solutions in deployments
that are on cloud or on-premise, or a hybrid where an enterprise
has the private resource service accessed by public websites.

A. Security and Access Control

The transport security is provided by secure WebSocket
over TLS for client-server, and encrypted peer-to-peer media
path in WebRTC. A traditional server-side web application that
hides the user data typically authenticates the user before
allowing access. Once authenticated, the application ensures
access of only the authorized user data. Separating the data
from the application in the resource model requires separate
end user and application authentication so that a resource may
be owned by a user or an application, or both. Existing systems
[39][19][18][15][16][9][11] already define several access
control mechanisms for web resources inspired by Unix file
permissions. Our summary of requirements in the context of
resource model follows.

Each resource has an owner and an optional group. A user
belongs to zero or more groups. The ownership/permissions are
set when a resource is created, and not changed afterwards. A
resource has three permission-sets for owner, group and others,
each with flags to read, write, append, traverse and send-event. A
read permission is needed to GET a resource, a write permission
to PUT an object resource or POST or DELETE a child resource,
and a traverse permission to access the child resources in the
hierarchy. The write and append permissions are separate
because certain array resources such as inbox should allow
append from others but not write. The send-event flag allows
sending end-to-end messages on that resource. By default a
resource's owner and group depend on the creator. If the setgid
flag is set on the parent, a new child resource inherits the owner
and group from its parent, useful for creating public repository.

The user owns /users/{user-id} and the application owns
/apps/{app-id}. The resources under /users/{user-id}/apps/{app-id}
are application specific resources for this user, and must be
authenticated by both. A soft-link /apps/{app-id}/users/{user-id}
points to this, so that an application can manage all its users
under its resource path. When a webpage tries to access a
protected resource, the service asks for authentication, and
remembers the authorized identity (user or application) for a
subsequent access on that connection. The user authentication
is directly between the browser and the resource service. The
application authentication involves the web server that hosts
the application code to generate the secure token based on a
private application key [2].

B. Security and Cross Domain

While the user trusts the resource service with her data, she
may not trust the web application. A naïve resource service
may allow the connector from any cross-domain website to
connect [40][41]. This poses a security threat from the web
application which may secretly deliver sensitive user data such
as password to the hosting website. One solution is for the
connector to load the real-connector code from the resource-
service website in a separate Window and use postMessage to
communicate between the two [35][19]. The real-connector
prompts for password, hides all the sensitive data and co-relates
the website origin with the data access request and its response.
Other solutions are possible, e.g., a browser plugin or extension
for the connector to deliver the webpage signature to the
resource service that allows only authorized web pages to
connect, or a proxy at the resource server to load the web
application but prevent any data back to the website. A detailed
analysis of cross-origin attacks is for further study.

C. Robustness against Failures

Failure in client, server or network is possible. A transient
data, e.g., presence or call member, is automatically deleted
and others notified when the owner disconnects, giving
robustness against browser crashes. We can apply existing
techniques for robustness as follows. A client can attempt to
reconnect with random exponential back-off to reduce churn
after a server failure. Connecting to multiple servers reduces
failover latency but requires sophisticated database replication
and notification. Periodic keep-alive can detect temporary
network failures. Finally, with the controlled and restricted API
of the resource service, the server is shielded from the bugs in
the application logic such as race-condition or dead-lock.

D. Interoperability with SIP/RTP

Existing enterprise communication systems are based on
Voice-over-IP protocols such as SIP and RTP [37]. Unlike our
loosely coupled widgets such as phone, conference and video-io,
the session oriented VoIP systems tightly couple the call
signaling session with media streams. For instance, changing
from voice-only to audio-video call not only requires adding a
new media stream over RTP, but also re-negotiating the session
via SIP. This makes it difficult to transparently interoperate
between our widgets and SIP/RTP, e.g., translation must know
whether the phone widget is attached to audio-io or video-io.

We plan to solve this by using server-side widgets to mimic
web-widgets and do interoperability. For example, a gateway
adaptor could connect to the resource service, and provide a
resource path, /dev/sip. The resource service then delivers any
access request under this path to the adaptor. When the adaptor
detects an invite message on its resource, it initiates a
corresponding SIP INVITE request. The concept of mounting a
path to an adaptor has been practiced before [19]. The
interoperability details are for further study.

VII. CONCLUSION AND FUTURE WORK

The resource-based model enables data-centric design and
data-oriented programming in web applications. It provides
three main benefits over today's social websites: user-centric
(unlike app-centric) storage and data management, easy data
sharing beyond a single application to facilitate mash-ups, and

separation of the application logic from the data during run-
time, e.g., an enterprise could host its own a resource service
for the enterprise-only connections and interactions. Moving
the application logic to the endpoint enables scalable and
robust servers because the servers do not have many stateful
processes. The advantages are more applicable to the web
applications requiring cross-site communication mash-ups.

We have shown that many communication scenarios can be
built completely in HTML5 running in the browser. We
described an application independent signaling for WebRTC
using video-io. With more social business websites involving
real-time interactions [42], we expect more such signaling
protocols and libraries to appear in near future. A drawback of
our approach is that any visitor can potentially steal the
application logic by viewing the webpage source code.

We continue to expand our inventory of widgets in aRtisy.
We have built widgets beyond traditional communication such
as shared boards for Chess and Ludo games that let the users
play without imposing game rules. We are building gateway
adaptors for SIP and XMPP-based systems and other enterprise
applications, e.g., mail exchange and corporate directory to
enable web developers to view those as resources. We plan to
explore plug-n-play application models, e.g., a user could use
her home webcam or current location as resources to attach in
an application such as home security.

REFERENCES

[1] T.Berners-Lee, "Socially Aware Cloud Storage", Notes on web design,
Aug 2009, http://www.w3.org/DesignIssues/CloudStorage.html

[2] E.Hammer, "The oAuth 1.0 protocol", IETF RFC 5849, Apr 2010.

[3] WebRTC 1.0: Real-time communication between browsers, W3C
Working Draft, Aug 2012, http://www.w3.org/TR/webrtc/

[4] Real-Time Communication in WEB-browsers (RTCWEB) IETF
working group, http://tools.ietf.org/wg/rtcweb

[5] T.Reenskaug, "Thing-model-view-editor", Xerox PARC technical note,
May 1979.

[6] S.Goderis, "On the separation of user interface concerns: a programmer's
perspective on the modularisation of user interface code", PhD Thesis,
Vrije Universiteit Brussels, pp.15-21, 2008.

[7] E.Naone, "Who owns your friends?", MIT Technology Review
Magazine, Jul/Aug 2008.

[8] D.Hardt, "The oAuth 2.0 authorization framework", IETF RFC 6749,
Oct 2012.

[9] A.M.Vahdat, P.C.Eastham and T.E.Anderson, "WebFS: a global cache
coherent file system", Technical report, UC Berkeley, 1996.

[10] B.Callaghan, "WebNFS client specification", RFC 2054, 1996

[11] F.Hsu and H.Chen, "Secure file system services for web 2.0
applications", ACM Cloud Computing Security Workshop, Chicago, IL,
Nov 2009.

[12] Remote shared objects in Flash Player, http://livedocs.adobe.com

[13] M.B.de Jong and F.Kooman, "remotestorage", IETF internet draft (work
in progress), Dec 2013

[14] SyncFileSystem API, The chromium projects, 2013.

[15] The DataPortability project to connect, control, share and remix, 2007-
2009, http://dataportability.org

[16] Unhosted web apps: freedom from web 2.0's monopoly platforms,
http://unhosted.org

[17] The diaspora project: a privacy aware, personally controlled, distributed
open source social network, 2010, http://diasporaproject.org

[18] R.Geambasu et al., "The organization and sharing of web service objects
with menagerie", World Wide Web Conference (WWW), 2008.

[19] R.Chandra, P.Gupta and N.Zeldovich, "Separating web applications
from user data storage with BStore", USENIX Conference on Web
Application Development (WebApps), Boston, MA, Jun 2010.

[20] P.Saint-Andre, "Extensible messaging and presence protocol (XMPP):
instant messaging and presence", IETF RFC 3921, Oct 2004.

[21] Pubsubhubbub: a simple web-hook based pubsub protocol and open
source project, 2008, https://code.google.com/p/pubsubhubbub/

[22] Distributed publish/subscribe event system, open source project, 2007,
http://pubsub.codeplex.com/

[23] OMG Data Distribution Service (DDS) for real-time systems, Dec 2004,
http://www.omg.org/spec/DDS/

[24] M.Hapner et al., "Java messaging service (JMS) API 1.1", JSR-000914,
Sun Microsystems, Apr 2012.

[25] R.Raymond, "Open peer – a proposed peer-to-peer signaling for
WebRTC", Hookflash whitepaper, 2012.

[26] R.Joshi, "Data-oriented architecture: a loosely coupled real-time SOA",
Whitepaper, Aug 2004, http://www.rti.com

[27] X.Wu and V.Krishnaswamy, "Widgetizing communication services",
IEEE International Conference on Communications (ICC), May 2010.

[28] K.Singh and C.Davids, "Flash-based audio and video communications in
the cloud", Technical Report, Jun 2011, arXiv:1107.0011 [cs.NI]

[29] C.Davids et al., "SIP APIs for voice and video communications on the
web", International conference on principles, systems and applications of
IP telecommunications (IPTcomm), Wheaton, IL, Aug 2011

[30] The WebSocket API, W3C candidate recommendation, Sep 2012,
http://www.w3.org/TR/websockets/

[31] Pywebsocket project: webSocket server and extension for Apache HTTP
Server, http://code.google.com/p/pywebsocket/

[32] I.Paterson et al., "Bidirectional-streams over synchronous HTTP
(BOSH)", XEP 0124, version 1.10, Jul 2010, http://xmpp.org

[33] The Channel API for Google App Engine, Mar 2012,
https://developers.google.com/appengine/docs/java/channel/

[34] J.Rosenberg, "Interactive connectivity establishment (ICE): a protocol
for network address translator (NAT) traversal for offer/answer
protocols", IETF RFC 5245, Apr 2010.

[35] HTML5: a vocabulary and associated APIs for HTML, W3C candidate
recommendation, Dec 2012, http://www.w3.org/TR/html5

[36] O.Novo et al., "Conference information data model for centralized
conferencing (XCON)", IETF RFC 6501, Mar 2012.

[37] J. Rosenberg, et al., “SIP: Session Initiation Protocol”, IETF, RFC 3261,
June 2002.

[38] K.K.Dhara et al., "Reconsidering social networks for enterprise
communication services", IEEE Globecom, Florida, Dec 2010.

[39] Web access control, http://www.w3.org/wiki/WebAccessControl

[40] Cross-origin resource sharing (CORS), W3C candidate recommendation,
Jan 2013, http://www.w3.org/TR/cors/

[41] D.Fernandez, "Cross-domain REST calls using CORS", Blog article,
Nov 2012, http://blogs.mulesoft.org

[42] A.Lepofsky, "Social business 2013: less talking, more doing",
Constellation Research, Dec 2012, http://www.constellationrg.com/blog

